Cho tam giác ABC vuông tại A, gọi M là trung điểm của BC. Kẻ MI vuông góc với AC tại I. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Trên tia đối của tia IM lấy điểm N sao cho IM = IN. Gọi K là giao điểm của AB và CN. Chứng minh rằng:
a) ∆𝐼𝑀𝐶 = ∆𝐼𝑁𝐶
b) CB = CK và N là trung điểm của CK.
c) AB song song với EC
d) Ba điểm E, I, K thẳng hàng
(nhớ vẽ hình)