K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

 Giả sử căn bậc 2 của 2 là 1 số hữu tỉ
Vậy căn 2 = a/b 
với a,b thuộc Z, b khác 0 và a/b là 1 phân số tối giản. 
bình phương hai vế ta được: 2=a^2/b^2 
suy ra: a^2=2b^2 
Vậy a^2 là số chẵn, suy ra a là số chẵn. 
nên a=2m, m thuộc Z(m là 1 tham số), ta được: 
(2m)^2=a^2=2b^2 
suy ra: b^2=(2m)^2/2=2m^2 
Vậy b^2 là số chẵn suy ra b là số chẵn. 
nên b=2n, n thuộc Z(n là tham số) 
Như vậy: a/b = 2m/2n ko phải là phân số tối giản, trái với giả sử ban đầu. 
Vậy căn bậc 2 của 2 là 1 số vô tỉ. 

12 tháng 11 2015

a)

can bac 2 cua 2 =1,4142...

b)

can bac 2 cua 3 =1,73205...

c)

can bac 2 cua 2 + can bac 2 cua 3 =3,1462...

tap hop so vo ti gom: so vo han tuan hoan,so vo han khong tuan hoan

1 TIK nha !

13 tháng 8 2017

Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

13 tháng 8 2017

sai rồi bạn ơi mik làm đc rồi

AH
Akai Haruma
Giáo viên
31 tháng 7 2024

Lời giải:
Giả sử $\sqrt{7}\in\mathbb{Q}$. Đặt $\sqrt{7}=\frac{a}{b}$ với $a,b$ nguyên, $b\neq 0$, $(a,b)=1$.

Ta có:

$7=\frac{a^2}{b^2}$

$\Rightarrow a^2=7b^2\vdots 7\Rightarow a\vdots 7\Rightarrow a^2\vdots 49$

$\Rightarrow 7b^2=a^2\vdots 49\Rightarrow b^2\vdots 7$

$\Rightarrow b\vdots 7$

Vậy $7=ƯC(a,b)$ (trái với điều kiện $(a,b)=1$)

Do đó điều giả sử là sai. Tức là $\sqrt{7}$ là số vô tỉ.