Cho các điểm E và F nằm trên các cạnh AB và bC của hình bình hành ABCD sao cho FA=EC. Gọi I là giao điểm của FA và EC. Chứng minh rằng ID là tia phân giác của góc AIC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
gọi H, K lần lượt là hình chiếu vuông góc của D lên cạnh AF, CE
Dễ dàng chứng minh đc
S AFD=S CED=1/2 S ABCD
S AFD=1/2 AF.DH, S AFD=1/2.CE.DK ( VÌ CE = AF )
=> DH=DK
=> ĐPCM
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm I.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành
Câu thứ nhất sai đề bạn ạ vì ko có tia đối của tia AD
GỢI Ý
Bạn tự vẽ hình.
1) Gọi độ dài cạnh của hình vuông ABCD là a (\(AB=BC=CD=DA=a\))
△DCF∼△BEC (g-g) \(\Rightarrow\dfrac{DF}{a}=\dfrac{a}{BE}\)
BE//CD \(\Rightarrow\dfrac{a}{BE}=\dfrac{CH}{BH}\)
DF//BC \(\Rightarrow\dfrac{DF}{a}=\dfrac{DG}{CG}\)
\(\Rightarrow\dfrac{DG}{CG}=\dfrac{CH}{BH}\Rightarrow\dfrac{DG}{CH}=\dfrac{CG}{BH}=\dfrac{DG+CG}{CH+BH}=\dfrac{DC}{BC}=1\)
\(\Rightarrow DG=CH;CG=BH\)
△ADE∼△CHD \(\Rightarrow\dfrac{a}{AE}=\dfrac{CH}{a}\left(1\right)\)
△BCG∼△FAB \(\Rightarrow\dfrac{a}{AF}=\dfrac{CG}{a}\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow a\left(\dfrac{1}{AE}+\dfrac{1}{AF}\right)=\dfrac{CH+CG}{a}=\dfrac{CH+BH}{a}=1\)
\(\Rightarrow\dfrac{AC}{AE}+\dfrac{AC}{AF}=\sqrt{2}\)
b) BỔ ĐỀ HÌNH THANG: Trong hình thang, đường thẳng tạo bởi giao điểm của hai đường chéo và giao điểm của hai cạnh bên thì đi qua 2 trung điểm của hai đáy.
Quay lại bài toán:
Qua O kẻ đường thẳng // với AF cắt AB, CF tại X,Y.
*Chứng minh OX=OY (dùng định lí Thales giới hạn trong các tam giác trong hình thang ABCF).
*Chứng minh K là trung điểm AF (dùng định lí Thales trong các tam giác AKE, FKE).
*AF cắt DC tại G.
-△APE có: AE//CG (ABCD là hình bình hành) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{AE}{CG}\) (hệ quả định lý Ta-let) mà \(AE=CF\left(gt\right)\) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{CF}{CG}\)
-△ADG có: CF//AD (ABCD là hình bình hành) \(\Rightarrow\dfrac{CF}{AD}=\dfrac{CG}{DG}\Rightarrow\dfrac{AD}{DG}=\dfrac{CF}{CG}=\dfrac{AP}{PG}\)
*AH//DP (H thuộc DC)
△AHG có: AH//DP (gt) \(\Rightarrow\dfrac{AP}{PG}=\dfrac{DH}{DG}=\dfrac{AD}{DG}\Rightarrow DH=AD\)
\(\Rightarrow\)△ADH cân tại D. \(\Rightarrow\widehat{HAD}=\widehat{ADH}=\widehat{ADP}=\widehat{CDP}\)
\(\Rightarrow\)DP là tia phân giác của góc ADC