cho tam giac abc vuong tai a co ah la duong cao. ve hd vuong goc voi ab(h thuoc ab), he vuong goc voi ec(e thuoc ac). ab=12cm, ac=16cm
a) CMR:▲HAC đồng dang ▲ABC
b)CMR:AH2=AD.AB
C)CMR: AD.AB=AE.AC
d) tính \(\frac{S▲ADE}{S▲ACB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: Xét ΔAHB vuông tại H có HE là đường cao
nen AE*AB=AH^2
Xét ΔAHC vuông tạiH có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
c: góc MEB=góc AEF=góc AHF=góc MCF
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
=>ΔMEC đồng dạng với ΔMBF
=>góc MCE=góc MFB
Vì trong 1 tam giác cân, đường cao đồng thời là đường trung tuyến, vừa là đường phân giác của tam giác đó.
\(\Rightarrow\) \(\widehat{EAO}\)\(=\widehat{FAO}\)
Xét \(\Delta EAO\) và \(\Delta FAO\) có:
AO là cạnh chung
\(\widehat{AOE}\)\(=\widehat{AO}F\) ( vì AH\(\perp BC\)\(\Rightarrow\) AH\(\perp\)EF)
\(\widehat{EAO}\)\(=\widehat{FAO}\) (cmt)
\(\Rightarrow\Delta EAO=\Delta FAO\left(g.c.g\right)\)
\(\Rightarrow AE=\) AF( cặp cạnh tương ứng)
Vì \(\widehat{AOE}=\widehat{OHB}\) \(=90\)độ
Mà 2 góc này ở vị trí đồng vị nên EF// BC (1)
Vì \(\Delta ABC\) cân tại A=> \(\widehat{B}\) = \(\widehat{C}\) (2)
Từ (1) và (2)=> BEFC là hình thang cân.
Hình:
Giải:
Theo hình vẽ và dữ kiện đề bài, ta liệt kê các góc nhọn:
\(\widehat{ABC};\widehat{ACB};\widehat{BHF};\widehat{FHA};\widehat{FAH};\widehat{AHE};\widehat{HAE};\widehat{EHC}\)
=> Có 8 góc nhọn
Ta có:
\(\left\{{}\begin{matrix}\widehat{FHE}=90^0\\\widehat{HEA}=90^0\\\widehat{FAE}=90^0\end{matrix}\right.\left(gt\right)\)
Suy ra tứ giác AFHE là hình chữ nhật
Từ đó, suy ra:
\(\left\{{}\begin{matrix}FH//AE\left(FH//AC\right)\\HE//AF\left(HE//AB\right)\end{matrix}\right.\)
* Xét trường hợp FH // AE ( FH // AC), có:
- \(\widehat{FHA}=\widehat{HAE}\) (Hai góc so le trong)
- \(\widehat{BHF}=\widehat{ACB}\) (Hai góc đồng vị)
* Xét trường hợp HE // AF ( HE // AB), có:
- \(\widehat{AHE}=\widehat{FAH}\) (Hai góc so le trong)
- \(\widehat{EHC}=\widehat{ABC}\) (Hai góc đồng vị)
Ta thấy có đủ 8 góc nhọn và có 4 cặp góc nhọn bằng nhau
Vậy ...
xét tam giác ABH VÀ TAM GIÁC ACH CÓ
AB=AC
AH CHUNG
GÓC AHB=GÓC AHC
=>TAM GIÁC AHC=TAM GIÁC ABH
c. Bạn tự trình bày lại nha, mình chỉ tóm tắt thôi
\(\Delta AEH\) và \(\Delta AHC\) đồng dạng vs nhau(g.g)
mà \(\Delta AEH\) = \(\Delta ADH\)
=>\(\Delta ADH\) và \(\Delta AHC\) đồng dạng vs nhau
lại có: \(\Delta ABC\) và \(\Delta AHC\) (bạn đã chứng minh)
=> \(\Delta ABC\) và \(\Delta ADH\) đồng dạng vs nhau
=>\(\frac{AD}{AE}=\frac{AC}{AB}\)
=> AD.AB=AE.AC
d.Gọi k là tỉ số cặp cạnh của tam giác
Vì \(\Delta ABC\) và \(\Delta ADH\) đồng dạng vs nhau
=>\(\frac{AD}{AE}=\frac{AC}{AB}=\frac{16}{12}=\frac{4}{3}=k\)
=>\(\frac{S_{\Delta ADE}}{S_{\Delta ACB}}=k^2=\left(\frac{4}{3}\right)^2=\frac{16}{9}\)
Cho mình ý kiến nha.
a) xét tam giác HAC và tam giác ABC có: C là góc chung, H=A(=90 độ) suy ra tam giac HAC đồng dạng tam giác ABC (g.g)
b)xét tam giác AHD và tam giác ABH có:A là góc chung, D=H(=90độ) suy ra tam giác AHD đồng dạng tam giác ABH(g.g)
suy ra AH/AB=AD/AH suy ra AH*AH=AD*AB hay AH2=AD*AB