Các bạn giải giúp mình bài này với:
Tìm các số tự nhiên a,b thỏa mãn :
(2^a+ 1)(2^a+2)(2^a+3)+2 nhân 6^b= 992
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét b khác không:
(2^a+1)(2^a+2)(2^a+3) chia hết cho 3
Mà 2.6^b chia hết cho 3
=>Vế trái chia hết cho 3
=>992 chia hết cho 3(vô lí ) (loại)
Vậy b chỉ có thể =0
Thay vào ta được :
(2^a+1)(2^a+2)(2^a+3)= 992 - 2
=>(2^a+1)(2^a+2)(2^a+3)= 9.10.11
=>2^a+1=9
=>2^a=8
=>a=3
BẠN NHỚ
giả sử \(n^2+6n+3\) là SCP
Đặt \(n^2+6n+3=k^2\)
\(\Rightarrow\left(n^2+6n+9\right)-k^2-6=0\\ \Rightarrow\left(n+3\right)^2-k^2=6\\ \Rightarrow\left(n-k+3\right)\left(n+k+3\right)=6\)
Vì \(n\in N\Rightarrow\left\{{}\begin{matrix}n-k+3\in Z,n+k+3\in Z\\n-k+3< n+k+3\\n-k+3,n+k+3\inƯ\left(6\right)\end{matrix}\right.\)
rồi bạn lập bảng ra, tự lm tiếp nhé
Lời giải:
Vì $a,b$ là số tự nhiên nên $2a+1,b-2$ là số nguyên
$(2a+1)(b-2)=12$ nên $2a+1$ là ước của $12$
Mà $2a+1$ là số tự nhiên lẻ nên $2a+1\in\left\{1;3\right\}$
Nếu $2a+1=1$ thì $b-2=12:1=12$
$\Rightarrow a=0; b=14$ (thỏa mãn)
Nếu $2a+1=3$ thì $b-2=12:3=4$
$\Rightarrow a=1; b=6$ (thỏa mãn)