Cho tam giác ABC vuông tại A, biết AB=12cm, AC=16cm. Gọi M,M lần lượt là trung điểm của AB,AC a) Tính độ dài BC, MN b) Vẽ trung tuyến AI của tam giác ABC (I thuộc BC). Chứng minh tứ giác MNCI là hình bình hành c) Gọi D là giao điểm đối xứng của A qua I. Chứng minh tứ giac ABDC là hình chữ nhật d) Gọi K là giao điểm DB và NM. Chứng minh KA=DN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=20cm
AM=10cm
b: Xét tứ giác AMCE có
N là trung điểm của AC
N là trung ddierm của ME
Do đó: AMCE là hình bình hành
mà MA=MC
nên AMCE là hình thoi
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)(1)
hay BMNC là hình thang
b: Xét ΔOBC có
I là trung điểm của OB
K là trung điểm của OC
Do đó: IK là đường trung bình của ΔOBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//IK và MN=IK
hay MNKI là hình bình hành
Câu 1:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
=>AK=BC/2=10(cm)
Câu 2:
a: Xét tứ giác AMCK có
I là trung điểm của MK
I là trung điểm của AC
Do đó: AMCK là hình bình hành
mà MA=MC
nên AMCK là hình thoi
b: Xét ΔABC có
M là trung điểm của BC
MI//AB
Do đó:MI là đường trung bình
=>MI//AB
hay MK//AB
Xét tứ giác ABMK có
AB//MK
AK//MB
Do đó: ABMK là hình bình hành
a: Xét ΔCAB có CN/CA=CP/CB
nên NP//AB và NP=AB/2
=>NP//AM và NP=AM
=>AMPN là hình bình hành
mà góc MAN=90 độ
nên AMPN là hình chữ nhật
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=108/15=7,2(cm)
a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)
hay BC=20(cm)
Xét ΔABC có
D là trung điểm của BC
I là trung điểm của AB
Do đó: DI là đường trung bình
=>DI=AC/2=8(cm)
Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=10(cm)
b: Xét tứ giác ABKC có
D là trung điểm của BC
D là trung điểm của AK
Do dó: ABKC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABKC là hình chữ nhật
c: Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
\(\Leftrightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)
b: Ta có: MN//AC và \(MN=\dfrac{AC}{2}\)
mà P\(\in\)AC và \(AP=\dfrac{AC}{2}\)(P là trung điểm của AC
nên MN//AP và MN=AP
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của AC
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\)
mà N\(\in\)BC và \(BM=\dfrac{BC}{2}\)
nên MP//BN và MP=BN
Xét tứ giác AMNP có
MN//AP
MN=AP
Do đó: AMNP là hình bình hành
Xét tứ giác BMPN có
MP//BN
MP=BN
Do đó: BMPN là hình bình hành
c) Hình bình hành AMNP trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MAP}=90^0\\AM=AP\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{BAC}=90^0\\AB=AC\end{matrix}\right.\)
Bài 2:
D là điểm đối xứng của C qua B nên \(BC=BD\)
Lại có \(AB=BC=10\left(cm\right)\)
\(\Rightarrow AB=\dfrac{CD}{2}\)
Do đó tam giác ADC vuông tại A
Theo định lí Pitago ta có:
\(AD^2=DC^2-AC^2=20^2-16^2=144\)
\(\Rightarrow AD=12\left(cm\right)\)
Bài 3:
Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay MN//PH
Do đó MNPH là hình thang
Xét tg AHC vuông tại H có HN là trung tuyến ứng vs ch AC nên \(HN=\dfrac{1}{2}AC\)
Mà P,M là trung điểm BC,AB nên PM là đtb tg ABC
Do đó \(PM=\dfrac{1}{2}AC\)
Từ đó ta được PM=HN
Vậy MNPH là hình thang cân
a, Xét tứ giác BICN có :
BM=MC
IM=MN
do đó tứ giác BICN là hình bình hành ( t/c 2 đường chéo)
b, áp dụng đ/l py-ta-go vào tam giác vuông ABC có :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{12^2+16^2}=20cm\)
lại có \(AM=\dfrac{1}{2}BC\)
\(\Rightarrow AM=\dfrac{1}{2}.20=10cm\)
a:BC=20cm
MN=10cm