K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

a:BC=20cm

MN=10cm

23 tháng 12 2021

a: BC=20cm

AM=10cm

b: Xét tứ giác AMCE có 

N là trung điểm của AC

N là trung ddierm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi

23 tháng 12 2021

a: BC=20cm

AM=10cm

b: Xét tứ giác AMCE có 

N là trung điểm của AC

N là trung ddierm của ME

Do đó: AMCE là hình bình hành

mà MA=MC

nên AMCE là hình thoi

18 tháng 10 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình của ΔBAC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)(1)

hay BMNC là hình thang

b: Xét ΔOBC có 

I là trung điểm của OB

K là trung điểm của OC

Do đó: IK là đường trung bình của ΔOBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MN//IK và MN=IK

hay MNKI là hình bình hành

Câu 1: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

=>AK=BC/2=10(cm)

Câu 2: 

a: Xét tứ giác AMCK có

I là trung điểm của MK

I là trung điểm của AC

Do đó: AMCK là hình bình hành

mà MA=MC

nên AMCK là hình thoi

b: Xét ΔABC có 

M là trung điểm của BC

MI//AB

Do đó:MI là đường trung bình

=>MI//AB

hay MK//AB

Xét tứ giác ABMK có 

AB//MK

AK//MB

Do đó: ABMK là hình bình hành

15 tháng 12 2022

a: Xét ΔCAB có CN/CA=CP/CB

nên NP//AB và NP=AB/2

=>NP//AM và NP=AM

=>AMPN là hình bình hành

mà góc MAN=90 độ

nên AMPN là hình chữ nhật

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=108/15=7,2(cm)

a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)

hay BC=20(cm)

Xét ΔABC có 

D là trung điểm của BC

I là trung điểm của AB

Do đó: DI là đường trung bình

=>DI=AC/2=8(cm)

Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=10(cm)

b: Xét tứ giác ABKC có

D là trung điểm của BC

D là trung điểm của AK

Do dó: ABKC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABKC là hình chữ nhật

c: Xét tứ giác ABCE có 

AB//CE

AB=CE

Do đó: ABCE là hình bình hành

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)

\(\Leftrightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)

b: Ta có: MN//AC và \(MN=\dfrac{AC}{2}\)

mà P\(\in\)AC và \(AP=\dfrac{AC}{2}\)(P là trung điểm của AC

nên MN//AP và MN=AP

Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của AC

Do đó: MP là đường trung bình của ΔABC

Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\)

mà N\(\in\)BC và \(BM=\dfrac{BC}{2}\)

nên MP//BN và MP=BN

Xét tứ giác AMNP có 

MN//AP

MN=AP

Do đó: AMNP là hình bình hành

Xét tứ giác BMPN có 

MP//BN

MP=BN

Do đó: BMPN là hình bình hành

c) Hình bình hành AMNP trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MAP}=90^0\\AM=AP\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{BAC}=90^0\\AB=AC\end{matrix}\right.\)

16 tháng 10 2021

Bài 2:

D là điểm đối xứng của C qua B nên \(BC=BD\)

Lại có \(AB=BC=10\left(cm\right)\)

\(\Rightarrow AB=\dfrac{CD}{2}\)

Do đó tam giác ADC vuông tại A

Theo định lí Pitago ta có:

\(AD^2=DC^2-AC^2=20^2-16^2=144\)

\(\Rightarrow AD=12\left(cm\right)\)

16 tháng 10 2021

Bài 3:

Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC hay MN//PH

Do đó MNPH là hình thang

Xét tg AHC vuông tại H có HN là trung tuyến ứng vs ch AC nên \(HN=\dfrac{1}{2}AC\)

Mà P,M là trung điểm BC,AB nên PM là đtb tg ABC

Do đó \(PM=\dfrac{1}{2}AC\)

Từ đó ta được PM=HN

Vậy MNPH là hình thang cân

20 tháng 1 2022

a, Xét tứ giác BICN có :

BM=MC

IM=MN

do đó tứ giác BICN là hình bình hành ( t/c 2 đường chéo)

b, áp dụng đ/l py-ta-go vào tam giác vuông ABC có :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{12^2+16^2}=20cm\)

 lại có \(AM=\dfrac{1}{2}BC\)

\(\Rightarrow AM=\dfrac{1}{2}.20=10cm\)