Tìm số tự nhiên có hai chữ số,biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và nếu viết thêm chữ số bằng chữ số hàng chục vào bên phải thì được một số lớn hơn số ban đầu là 682
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là chữ số hàng chục \(\left(x\in N,0< x\le9\right)\)
Gọi y là chữ số hàng đơn vị \(\left(y\in N,0\le y\le9\right)\)
Số ban đầu là: \(\overline{xy}=10x+y\)
Số lúc sau: \(\overline{xyx}=100x+10y+x=101x+10y\)
Do chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 nên: x - y = 2
Do số mới lớn hơn số ban đầu 682 nên: \(101x+10y-10x-y=682\)
\(\Leftrightarrow91x+9y=682\)
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}x-y=2\\91x+9y=682\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}91x-91y=182\\91x+9y=682\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-100y=-500\\x-y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)
Vậy số cần tìm là 75
Gọi số cần tìm là ab .Theo đề bài ta có b= a-2
aba - ab = 682
101a+10b-10a-b=682
91a+9b=682
91a+9(a-2)=682
100a=682+18
100a=700
a=7 => b=5
Vậy số cần tìm là 75
Gọi số cần tìm là ab(ĐK:0<a,b≤9)
Theo đề ra ta có:b-2a=2(1)
Nếu thêm 1 chữ số bằng chữ số hàng chục vào bên phải số đã cho thì số mới là aba
Ta có:aba-ab=345
\(\Leftrightarrow\)101a+10b-10a-b=345
\(\Leftrightarrow\)91a+9b=345(2)
Từ (1)(2) ta có hệ phương trình\(\begin{cases} b-2a=2 \\ 91 a+9b=345 \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} a=3\\ b=8 \end{cases}\)
Vậy số tự nhiên cần tìm là 38
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện:.......
Theo bài ra ta có:
$a+2b=12(1)$
$\overline{a0b}-\overline{ab}=180$
$\Leftrightarrow 100a+b-(10a+b)=180$
$\Leftrightarrow 90a=180$
$\Leftrightarrow a=2(2)$
Từ $(1); (2)\Rightarrow b=5$
Vậy số cần tìm là $25$
Gọi số cần tìm là \(\overline{ab}\)\(\left(a\ne0\right)\)
Ta có: \(\overline{ab2}-\overline{ab}=479\)và \(a-b=2\)
\(\Leftrightarrow\overline{ab}.10+2-\overline{ab}=479\)\(\Leftrightarrow9.\overline{ab}=477\)\(\Leftrightarrow\overline{ab}=53\)thoả mãn điều kiện \(a-b=2\)
Vậy số cần tìm là 53
a) Gọi số cần tìm là ab thêm 5 vào bên phải ta có ab5 . Vậy :
Số cần tìm là :
( 275 - 5 ) : ( 10 - 1 ) . 1 = 30
Vậy ab = 30
b) Gọi số cần tìm là ab . Ta có :
a + b = 12 và a - b = 4
Áp dụng tìm 1 số khi biết tổng và hiệu :
Vậy số a là : ( 12 + 4 ) : 2 = 8
Số b là : 12 - 8 = 4
Vậy a = 8 và b = 4
a, Thêm chữ số 5 vào bên phải của 1 số thì số đó sẽ tăng gấp 10 lần số ban đầu và 5 đơn vị
=> Hiệu của hai số đó sẽ bằng 9 lần số ban đầu và 5 đơn vị
Vậy , số đó là : ( 275 - 5 ) : 9 = 30
b, Số hàng chục lớn hơn hàng đơn vị 4 và tổng bằng 12
=> Chữ số hàng đơn vị là : ( 12 - 4 ) : 2 = 4
=> Chữ số hàng chục là : 4 + 4 = 8
Vậy, số đó là 84
Gọi chữ số hàng chục của số cần tìm là a, chữ số hàng đơn vị của số cần tìm là b (a thuộc N*, b thuộc n)
Khi đó, số cần tìm có dạng: 10a+b
Nếu viết thêm chữ số hạng chục vào bên phải số cần tìm thì khi đó số mới có dạng: 100a+ 10b+a=101a+10b
Mà số mới này hơn số đã cho 682 đơn vị
=>101a+10b-10a-b=682
<=>91a+9b=682 (1)
Theo đề ta có: a-b=2 <=>b=a-2(2)
Thay (2) vào (1) ta được:
91a+9 (a-2)=682
<=>100a=700
<=>a=7(thỏa điều kiện)
=> b=a-2=7-2=5 (thỏa điều kiện)
Vậy,số đã cho là 75
dở hơi