K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

11 tháng 5 2020

Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{7\cdot8}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< 1-\frac{1}{8}< 1\)

8 tháng 7 2017

\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Vì  \(\frac{2}{6}>\frac{2}{12};\frac{2}{8}>\frac{2}{12};\frac{2}{10}>\frac{2}{12};...;\frac{1}{11}>\frac{2}{12}\)

\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>6.\frac{2}{12}=1\) \(\left(1\right)\)

Vì \(\frac{2}{8}< \frac{2}{6};\frac{2}{10}< \frac{2}{6};...;\frac{2}{11}< \frac{2}{6}\)

\(\Rightarrow E=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< 6.\frac{2}{6}=2\) \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1< E< 2\Rightarrow E\notin Z\)(đpcm)

NV
10 tháng 10 2019

\(B=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+...+\frac{2}{2\sqrt{100}}\)

\(\Rightarrow B< \frac{2}{2\sqrt{1}}+\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)

\(\Rightarrow B< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(\Rightarrow B< 1+2\left(\sqrt{100}-\sqrt{1}\right)\Rightarrow B< 19\)

Tương tự:

\(B>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{101}-\sqrt{100}}\)

\(\Rightarrow B>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)

\(\Rightarrow B>2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-\sqrt{1}\right)=18\)

\(\Rightarrow18< B< 19\Rightarrow B\) không phải là số tự nhiên

12 tháng 4 2017

bạn k cho mình chưa zậy ko là xóa kết bạn đây

8 tháng 8 2019

c) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)

\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)

\(\Leftrightarrow\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)

\(\Leftrightarrow x-2010=0\)

\(\Leftrightarrow x=0+2010\)

\(\Rightarrow x=2010\)

Vậy \(x=2010.\)

Mình chỉ làm câu c) thôi nhé.

Chúc bạn học tốt!

5 tháng 2 2020

\(A=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+...+\frac{19}{9^2\cdot10^2}\\ A=\frac{3}{1\cdot4}+\frac{5}{4\cdot9}+...+\frac{19}{81\cdot100}\\ A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\\ A=1-\frac{1}{100}=\frac{99}{100}\)

Ta thấy \(0< \frac{99}{100}< 1\)

\(\Rightarrow0< A< 1\)

\(\Rightarrow A\notin N\)

5 tháng 2 2020

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(\Rightarrow A=\frac{2^2-1}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(\Rightarrow A=\frac{2^2}{1^2.2^2}-\frac{1^2}{1^2.2^2}+\frac{3^2}{2^2.3^2}-\frac{2^2}{2^2.3^2}+...+\frac{10^2}{9^2.10^2}-\frac{9^2}{9^2.10^2}\)

\(\Rightarrow A=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(\Rightarrow A=\frac{1}{1^2}-\frac{1}{10^2}\)

\(\Rightarrow A=1-\frac{1}{100}\)

\(\Rightarrow A=\frac{99}{100}.\)

\(0< \frac{99}{100}< 1.\)

\(\Rightarrow0< A< 1.\)

\(\Rightarrow A\notin N\left(đpcm\right).\)

Chúc bạn học tốt!