cho hình vuông ABCD có cạnh bằng 4cm. gọi H,K lần lượt là là trung điểm của AB,BC. gọi P là trung điểm của AN,DM.
a) c/m tam giác APM là tam giác vuông
b) tính diện tích tam giác APM
c) c/m tam giác APM là tam giác cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAN vuông tại B và ΔADM vuông tại A có
BA=AD
BN=AM
=>ΔBAN=ΔADM
=>góc BAN=góc ADM
=>góc BAN+góc AMP=90 độ
=>AN vuông góc MD tại P
=>ΔAPM vuông tại P
b: AM=4/2=2cm
DM=căn 2^2+4^2=2*căn 5(cm)
AP=2*4/2*căn 5=4/căn 5(cm)
PM=AM^2/DM=2^2/2*căn 5=2/căn 5(cm)
S APM=1/2*AP*PM=1/2*8/5=4/5(cm2)
Xét 2 tam giác vuông BMC và CND có :
BM=CN (bằng nửa cạnh hình vuông); BC=CD
=> Tam giác BMC = Tam giác CND (c.g.c)
=> Góc BCM = Góc CDN
mà Góc BCM + góc DCM = 90 độ
=> Góc CDN + Góc DCN = 90 độ
=> Tam giác CDI vuông tại I
=> CM vuông góc với DN
Gọi P là trung điểm của CD, AP cắt DN tại H
Ta có PC= 1/2 DC
mà AM = 1/2 AB
lại có AB=CD (vì ABCD là hình vuông)
=> AM=PC
mặt khác AM // PC (vì AB // CD)
=> AMCP là hình bình hành
=> AP // CM
mà CM vuông góc với DN (cmt)
=> AP vuông góc với DN tại H
Tam giác CDI có CP= DP, PH // CI (vì AP // CM)
=> DH=HI
Tam giác ADI có AH là đường cao (vì AH vuông góc với DI)
AH là trung tuyến (vì DH= HI)
=> Tam giác ADI cân tại A
=> AI = AD
Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a
=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)
=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ
=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF
Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)
Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)
\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)
Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)
\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)