tinh S=1^2+2^2+3^2+...+100^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)
\(S=1.\left(2-1\right)+2.\left(3-1\right)+...+100.\left(101-1\right)\)
\(=1.2-1.1+2.3-1.2+...+100.101-1.100\)
\(=\left(1.2+2.3+...+100.101\right)+\left(1+2+...+100\right)\)
Áp dụng 1.2 + 2.3 + ... + n(n + 1) = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\) ta có
\(S=\frac{100.101.102}{3}+\frac{100.101}{2}=343400+5050=\)348450
3S = 1.2.3 + 2.3.3 + 3.3.4 + ... + 3.99.100
3S = 1.2.3 + 2.3.(4-1)+ 3.4.(5-2) + ... + 99.100.(101 - 98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 99 .100 .101 - 98.99.100
3S = 99.100.101
3S = 999900
S=333300
S=1*2+2*3+3*4+...+99*100
3S=3*(1*2+2*3+3*4+...+99*100)
3S=1*2*3+2*3*3+3*4*3+...+99*100*3
3S=1*2*(3-0)+2*3*(4-1)+3*4*(5-2)+...+99*100*(101-98)
3S=1*2*3-1*2*0+2*3*4-2*3*1+3*4*5-3*4*2+...+99*100*101-99*100*98
3S=(1*2*3-2*3*1)+(2*3*4-3*4*2)+...+(98*99*100-99*100*98)+99*100*101
3S=0+0+...+0+999900
3S=999900
S=999900/3
S=333300
3S = 1.2.3 + 2.3.3 + 3.4.3 +...+99.100.3
=1.2.3 + 2.3.(4-1)+3.4(5-2)+...+99.100(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
= 99.100.101
=999900
\(S=1+\frac{1}{2}+\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)
\(S=1+\frac{1+2+3+4+...+101}{2}\)
\(S=1+\frac{10201}{2}=...\)
tick cho mink nha!