Tỉ số chiều dài và chiều rộng của hình chữ nhật là \(\frac{3}{2}\). Nếu chiều dài hình chữ nhật tăng thêm 3 đơn vị thì chiều rộng phải tăng thêm mấy đơn vị để tỉ số 2 cạnh không đổi? Nhớ lời giải rõ ràng nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng lần lượt là : a,b (a,b > 0)
Khi đó : \(\frac{a}{b}=\frac{3}{2}\)=> 2a = 3b
Nếu chiều dài hình chữ nhật tăng thêm 3(đơn vị) thì chiều rộng hình chữ nhật phải tăng lên mấy đơn vị để tỉ số của 2 cạnh không đổi
Nên : \(\frac{a+3}{b+x}=\frac{a}{b}=\frac{3}{2}\)
\(\Leftrightarrow\left(a+3\right)b=\left(b+x\right)a\)
<=> ab + 3b = ab + ax
<=> ab - ab = ax - 3b
=> ax - 3b = 0
=> ax = 3b
Mà : 2a = 3b
Nên x = 2
Cách 1
Nếu chiều dài hình chữ nhật tăng lên 3 đơn vị thì chiều rộng sẽ tăng lên số lần là
\(3\div\frac{3}{2}=2\) Đơn vị
\(3\div2=\frac{3}{2}=0,5\)
Đáp số ; \(2\) Đơn vị
Tôi chỉ giải được cách 1 thôi. Năm nay mới lên lớp 6