K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

    Trên tia đối của tia MA lấy D sao cho MD=MA. Khi đoÁM=1/2AD. Nối DC.                                             Xét tam giác MAB&tam giác MDC                                                                                                             MA=MD (cách chọn D); MB=MD(gt); góc AMB= góc DMC ( đối đỉnh) . Do đó: tam giácMAB = tam giác MDC. Suy ra: gócMAB= MDC. Mà 2 góc này so le trong cho nên BA //DC . Mà BA vuông góc AC(gt) nên DC vuông góc AC.                                       

    Xét tam giác vuông ABC & tgv CDA có: AC- cạnh chung; AB= CD; . Do đó tgv ABC= tgv CDA( 2 cạnh góc vuông) . Suy ra: BC = AD. Mà AM=1/2AD . Do đó: AM=1/2BC

 

 

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

10 tháng 3 2017

B A C M

a) Ta có tam giác ABC cân tại A => AM vừa là trung tuyến vừa là đường cao

=> AM vuông góc BC tại M

b) Vì M là trung điểm BC => MB = MC = BC/2 = 3/2 = 1,5 (cm)
Xét tam giác ABM vuông tại M (cmt) có:

   AM^2 + BM^2 = AB^2 (pytago)

   AM^2 + 1,5^2 = 5^2

   AM^2 + 2,25 = 25

  AM^2             = 25 - 2,25 = 22,75

=> AM = căn của 22,75 và AM xấp xỉ 4,8 (cm)