Cho ∆ABC có AB = AC, M là trung điểm của BC.
a) Chứng minh: ∆AMB=∆AMC và AM⊥BC.
b) Trên cạnh AB lấy điểm D ( D khác A và B) . Từ D kẻ đường vuông góc với AM tại K và kéo dài cắt cạnh AC tại E. Chứng minh: AD =AE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
DO đó: ΔAMB=ΔAMC
a, Xét 2 tam giác AMB và AMC
AB=AC( gt )
AM ( chung )
BM=CM ( chumg điểm M )
Suy ra 2 tam giác AMB= AMC theo trường hợp C-C-C
hình bạn tự vẽ
mà sao bây j mới thi
GT | ΔABC cân tại A, M là trung điểm của BC \(D\in\)AB DE\(\perp\)MA(E\(\in\)AC) |
KL | a: ΔAMB=ΔAMC b: ΔADE cân |
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAM}=\widehat{EAM}\)
=>AM là phân giác của góc DAE
Xét ΔADE có
AM là đường cao
AM là đường phân giác
Do đó: ΔADE cân tại A
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét ΔADF và ΔCDE có
DA=DC
\(\widehat{ADF}=\widehat{CDE}\)
DF=DE
Do đó: ΔADF=ΔCDE
Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do dó: AECF là hình bình hành
Suy ra: AF//EC
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
Xét ΔADE có
AK là đường cao
AK là đường phân giác
Do đó: ΔADE cân tại A
SUy ra: AD=AE