Giúp tôi giải bài toan nay với:
Tính chu vi tam giac ABC vuông ở A biết rằng đường cao ứng với cạnh huyền chia tam giác thành 2 tam giác có chu vi bằng 18cm và 24cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
△ABH∼△CAH (g-g) \(\Rightarrow\dfrac{P_{ABH}}{P_{CAH}}=\dfrac{AB}{CA}=\dfrac{18}{24}=\dfrac{3}{4}\)
\(\Rightarrow AB=\dfrac{3}{4}CA\)
△ABC vuông tại A có: \(BC^2=AB^2+AC^2\Rightarrow BC^2=\dfrac{9}{16}CA^2+CA^2=\dfrac{25}{16}CA^2\)
\(\Rightarrow BC=\dfrac{5}{4}CA\)
△CAH∼△CBA (g-g) \(\Rightarrow\dfrac{P_{CAH}}{P_{CBA}}=\dfrac{CA}{CB}=\dfrac{CA}{\dfrac{5}{4}CA}=\dfrac{4}{5}\)
\(\Rightarrow P_{CBA}=\dfrac{5}{4}.P_{CAH}=\dfrac{5}{4}.24=30\left(cm\right)\)
Chu vi tam giác ABC :
AHB + AHC = ABC
Thay số, ta được : 18+24 = 42 (cm)
Gọi độ dài đoạn thẳng ngắn hơn được chia trên cạnh huyền là x (cm) với x>0
\(\Rightarrow\) Độ dài đoạn còn lại là \(x+14\)
Áp dụng hệ thức lượng trong tam giác vuông:
\(24^2=x\left(x+14\right)\)
\(\Leftrightarrow x^2+14x-576=0\Rightarrow\left[{}\begin{matrix}x=18\\x=-32\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\) Độ dài cạnh huyền là: \(18+\left(18+14\right)=50\left(cm\right)\)
Diện tích tam giác: \(S=\dfrac{1}{2}.24.50=600\left(cm^2\right)\)
Không mất tính tổng quát
g/s: BH=9m , CH=16m
Ta có: BC=BH+HC=25m
Xét tam giác ABC vuông tại A
=> \(AB^2+AC^2=BC^2=625\)
Xét tam giác ABH và ACH vuông tại H có: \(AB^2=AH^2+BH^2=AC^2-CH^2+BH^2\)=> \(AB^2=AC^2-16^2+9^2=AC^2-175\)
=> \(AC^2-175+AC^2=625\Rightarrow AC^2=400\Rightarrow AC=20\)m
=> \(AB^2=AC^2-175=225\Rightarrow AC=15\)m
Chu vi= 15+20+25=60 m