K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

\(a,\left\{{}\begin{matrix}MB=MC\\AB=AC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}AM=ME\\BM=MB\\\widehat{AMB}=\widehat{EMC}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BME}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}EC\\ c,\Delta AMB=\Delta AMC\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\widehat{AMC}\\ \text{Mà }\widehat{AMC}+\widehat{AMB}=180^0\\ \Rightarrow\widehat{AMC}=\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)

26 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

26 tháng 12 2021

1 câu thôi hả bạn?

 

15 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có

MB=MC

MA=MD

Do đó: ΔMBA=ΔMCD

=>\(\widehat{MBA}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó: ΔBEM=ΔCFM

=>ME=MF 

ΔBEM=ΔCFM

=>\(\widehat{BME}=\widehat{CMF}\)

mà \(\widehat{BME}+\widehat{EMC}=180^0\)(hai góc kề bù)

nên \(\widehat{CMF}+\widehat{EMC}=180^0\)

=>F,M,E thẳng hàng

mà MF=ME

nên M là trung điểm của EF

20 tháng 7 2023

a)xet ΔABM vaΔECM co:

     AM=EM(GT)

 ∠AMB = ∠EMC(doi dinh)

    BM=CM(M la trung diem BC)

⇒ΔABM =ΔECM(g.c.g)

b)Theo cau a co:ΔABM =ΔECM

⇒AB = CE ( 2 canh tuong ung)

(O DAY LA AC//BE HAY AB//EC HA BAN?)

20 tháng 7 2023

AC//BE ạ

 

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

DO đó: ΔABM=ΔACM

b: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

5 tháng 1 2022

Vẽ hình giúp mình luôn đc không ạ

20 tháng 7 2023

a) Xét tam giác ABM và tam giác ECM

Có:

AM = EM (gt)
BM = MC (gt)

AE cạnh chung

=> Tam giác ABM = tam gicas ECM (c.c.c)

b) Ta có: Tam giác ABM = tam giác ECM

=> AB = Ce (2 cạnh t/ư)

Tiếp theo bạn kẻ thêm rồi xét 2 tam giác ACM và tam giác BME (tương tự như câu A th) nhé (cả hình giống hình thoi nhé)

Từ đó có tam giác ACM = tam giác BME

=> Góc AMC = góc BME (2 góc đối đỉnh)

=> AC//BE (đpcm)

:))

 

a: Xét ΔABM và ΔECM có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔABM=ΔECM

b: ΔABM=ΔECM

=>AB=CE

Xét tứ giác ABEC có

M là trung điểm chung của AE và bC

=>ABEC là hình bình hành

=>AC//BE

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

DO đó: ABDC là hình bình hành

Suy ra: AB//CD

26 tháng 12 2023

a: Xét ΔMAB và ΔMEC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMEC

b: Ta có: ΔMAB=ΔMEC

=>AB=EC

Ta có: ΔMAB=ΔMEC

=>\(\widehat{MAB}=\widehat{MEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

c: Xét ΔMAC và ΔMEB có

MA=ME

\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMEB

=>\(\widehat{MAC}=\widehat{MEB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BE

d: Xét ΔIAM và ΔKEM có

IA=KE

\(\widehat{IAM}=\widehat{KEM}\)

AM=EM

Do đó: ΔIAM=ΔKEM

=>\(\widehat{IMA}=\widehat{KME}\)

mà \(\widehat{IMA}+\widehat{IME}=180^0\)(hai góc kề bù)

nên \(\widehat{KME}+\widehat{IME}=180^0\)

=>I,M,K thẳng hàng

a: 

loading...

GT

ΔABC cân tại A

M là trung điểm của BC

MK=MA

MH\(\perp\)AB; MK\(\perp\)AC

H\(\in\)AB; K\(\in\)AC

KL

b: ΔABM=ΔACM

c: ΔABM=ΔKCM

d: AB//CK

e: MH=MK

b: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

c: Xét ΔMAB và ΔMKC có

MA=MK

\(\widehat{AMB}=\widehat{KMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMKC

d: Ta có: ΔMAB=ΔMKC

=>\(\widehat{MAB}=\widehat{MKC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//KC

e: ΔAMB=ΔAMC

=>\(\widehat{MAB}=\widehat{MAC}\)

Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

=>MH=MK

=>ΔMHK cân tại M