cho tam giác nhọn ABC có AB=AC .Kẻ BD⊥AC tại D, kẻ CE ⊥AB tại E.Gọi I là giao điểm của BD và CE.Chứng minh rằng:
a,▲ABD=▲ACE
b,EI=DI
c,AI⊥BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
b: ΔABD=ΔACE
=>AD=AE
Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
Do đó: ΔAEI=ΔADI
=>EI=DI
c: ΔABD=ΔACE
=>BD=CE
BI+DI=BD
CI+EI=CE
mà EI=DI và BD=CE
nên BI=CI
IB=IC
AB=AC
Do đó: AI là đường trung trực của BC
=>AI\(\perp\)BC
a, xét tam giác ABD và tam giác ACE có góc A chung
AB = AC (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-gn)
b, tam giác abd = tam giác ACE (câu a)
=> góc ABD = góc ACE (Đn)
AB = AC (gt) => tam giác ABC cân tại A (Đn) => góc ABC = góc ACB
có ABD + góc DBC = góc ABC
góc ACE + góc ECB = góc ACB
=> góc DBC = góc ECB
=> Tam giác IBC cân tại I
=> IB = IC
xét tam giác EIB và tam giác DIC có : góc EIB = góc DIC (đối đỉnh)
góc BEC = góc CDB = 90
=> tam giác EIB = tam giác DIC (ch-gn)
=> EI = ID (đn)
bạn không được nói vậy , nói thế là khinh người khác và đây là nơi chúng ta giao lưu giúp nhau mà , nên bạn không được nói bậy như thế.
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
=>BE=DC
=>AE=AD
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
=>ΔAEI=ΔADI
=>góc EAI=góc DAI
=>AI là phân giác của góc BAC
c: ΔABC cân tại A
mà AM là trung tuyến
nên AM là phân giác của góc BAC
=>A,I,M thẳng hàng
`a,`
Vì `\Delta ABC` cân tại A
`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$
Xét `2\Delta` vuông và `BEC` và `CDB`:
`\text {BC chung}`
$\widehat {B} = \widehat {C}$
`=> \Delta BEC = \Delta CDB (ch-gn)`
`-> \text {BE = CD (2 cạnh tương ứng)}`
`b,`
Ta có: \(\left\{{}\begin{matrix}\text{AB = AE + BE}\\\text{AC = AD + CD}\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BE = CD}\end{matrix}\right.\)
`-> \text {AE = AD}`
Xét `2\Delta` vuông `AEI` và ` ADI`:
`\text {AE = AD}`
`\text {AI chung}`
`=> \Delta AEI = \Delta ADI (ch-cgv)`
`->` $\widehat {EAI} = \widehat {DAI} (\text {2 góc tương ứng})$
`-> \text {AI là tia phân giác của}` $\widehat {EAD}$
Mà \(\text{E}\in\text{AB, D}\in\text{AC}\)
`-> \text {AI là tia phân giác của}` $\widehat {BAC}$ `(1)`
`c,`
Vì M là trung điểm của AC
`-> \text {AM là đường trung tuyến của} \Delta ABC` `(2)`
Từ `(1)` và `(2)`
`-> \text {Ba điểm A, I, M thẳng hàng.}`
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
b) Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{BCE}=\widehat{DBC}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
\(\Leftrightarrow IB=IC\)(hai cạnh bên)
Xét ΔBAI và ΔCAI có
BA=CA(ΔABC cân tại A)
AI chung
IB=IC(cmt)
Do đó: ΔBAI=ΔCAI(c-c-c)
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
c) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: IB=IC(cmt)
nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy AI là đường trung trực của BC(đpcm)