K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Chọn 4 quyển sách khác nhau đủ 3 loại, có các TH sau:
TH1: 1 toán, 1 lý, 2 hóa: $A_1=C^1_6.C^1_7.C^2_8$ cách 

TH2: 2 toán, 1 lý, 1 hóa: $A_2=C^2_6.C^1_7.C^1_8$ cách 

TH3: 1 toán, 2 lý, 1 hóa: $A_3=C^1_6.C^2_7.C^1_8$ cách 

Tổng số cách: $A_1+A_2+A_3=3024$ cách 

14 tháng 1 2019

Xếp theo thứ tự: ngữ văn- toán- ngữ văn- toán- ngữ văn- toán-ngữ văn-toán- ngữ văn. Vậy có 5.4.4.3.3.2.2.1=2880 cách

Chọn B

11 tháng 11 2017

Chọn D

Tổng có 3 + 4 + 5 = 12 quyển sách được sắp xếp lên một giá sách có 3 ngăn (có 2 vách ngăn). Vì vậy, ta coi 2 vách ngăn này như 2 quyển sách giống nhau. Vậy số phần tử không gian mẫu 

Gọi A là biến cố : “ Sắp xếp các 12 quyển sách lên giá sao cho không có bất kỳ hai quyển sách toán nào đứng cạnh nhau”.

+) Xếp 9 quyển sách ( lý và hóa) cùng 2 vách ngăn có  11 ! 2 ! cách

+) Lúc này, có 12 “khoảng trống” ( do 9 quyển sách ( lý và hóa) cùng 2 vách ngăn tạo ra) để xếp 3 quyển sách toán vào sao cho mỗi quyển vào một “khoảng trống” có A 12 3  cách.

Vậy có tất cả 11 ! 2 ! . A 12 3 cách. Suy ra  

Vậy xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau là:

24 tháng 1 2018

a. Số cách chọn một quyển sách là 5+6+8=19

Chọn A

20 tháng 2 2019

c. Số cách chọn 2 quyển sách khác môn học là: 5×6+5×8+6×8=118

Chọn C

17 tháng 7 2019

b. Số cách chọn 3 quyển sách là 5×6×8=240

Chọn B

2 tháng 4 2017

1hàng

2 tháng 4 2017

3 nha bạn. Mà bạn có phải là fan của Fairy Tall k,nếu đúng thì kb nha

NV
4 tháng 10 2021

Có 4 cách chọn cuốn sách toán, 5 cách chọn cuốn sách lý, 6 cách chọn cuốn sách hóa

Theo quy tắc nhân ta có: \(4.5.6=120\) cách chọn 3 cuốn sách khác loại

25 tháng 9 2017

Bước 1: Do đề bài cho 4 quyển sách Toán đứng cạnh nhau nên ta sẽ coi như “buộc” các quyển sách Toán lại với nhau thì số cách xếp cho “buộc” Toán này là 4! cách.

Bước 2: Tương tự ta cũng “buộc” 3 quyển sách Lý lại với nhau, thì số cách xếp cho “buộc” Lý này là 3! cách.

Bước 3: Lúc này ta sẽ đi xếp vị trí cho 7 phần tử trong đó có:

+ 1 “buộc” Toán.

+ 1 “buộc” Lý.

+ 5 quyển Hóa.

Thì sẽ có 7! cách xếp.

Vậy theo quy tắc nhân ta có 7!4!3!=725760  cách xếp.

Chọn C.

NV
20 tháng 4 2023

Xếp 5 quyển Toán cạnh nhau: \(5!\) cách

Xếp 5 quyển Lý cạnh nhau: \(4!\) cách 

Xếp 3 quyển Văn cạnh nhau: \(3!\) cách

Hoán vị 3 loại Toán-Lý-Văn: \(3!\) cách

Tổng cộng có: \(5!.4!.3!.3!=...\) cách xếp thỏa mãn