3 vòi nước cùng chảy vào 1 bể. Nếu vòi I và vòi II cùng chảy thì sau \(\frac{36}{5}\)giờ bể đầy. Nếu vòi II và vòi III cùng chảy thì sau \(\frac{72}{7}\)giờ bể đầy. Nếu vòi I và vòi III chảy thì 8 giờ bể đầy. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu bể đầy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 1 giờ vòi I và vòi II chảy được :
\(1\div7\frac{1}{5}=\frac{5}{36}\) (lượng nước của bể)
Trong 1 giờ vòi II và vòi III chảy được:
\(1\div10\frac{2}{7}=\frac{7}{72}\)(lượng nước của bể)
Trong 1 giờ vòi I và vòi III chảy được :
\(1\div8=\frac{1}{8}\)(lượng nước của bể)
\(\Rightarrow\)Trong 1 giờ cả vòi chảy được :
\(\left(\frac{5}{36}+\frac{1}{8}+\frac{7}{72}\right)\div2=\frac{13}{72}\)(lượng nước trong bể)
Vậy cả ba vòi cùng chảy đầy bể trong :
\(1\div\frac{13}{72}=\frac{72}{13}=5\frac{7}{13}\)(giơ)
Trong 1 giờ vòi I và vòi II chảy được :
\(1\div7\frac{1}{5}=\frac{5}{36}\) (lượng nước của bể)
Trong 1 giờ vòi II và vòi III chảy được:
\(1\div10\frac{2}{7}=\frac{7}{72}\) (lượng nước của bể)
Trong 1 giờ vòi I và vòi III chảy được :
1 ÷ 8 = 8 /1 (lượng nước của bể)
⇒Trong 1 giờ cả vòi chảy được :
\(\left(\frac{5}{36}+\frac{1}{8}+\frac{7}{72}\right)\div2=\frac{13}{72}\) (lượng nước trong bể)
Vậy cả ba vòi cùng chảy đầy bể trong :
\(1\div\frac{13}{72}=5\frac{7}{13}\) (giơ)
mình chỉ biết đáp án thôi chứ k biết cách giải bạn nào biết thì chia sẻ nhé . Vòi 1:12 giờ, vòi 2:18 giờ ,vòi 3:24 giờ
Vòi1 + vòi 2=\(7\frac{1}{5}h\)
vòi 2 + vòi 3=\(10\frac{2}{7}h\)
vòi 1 + vòi 3=8\(h\)
=>2(vòi1+vòi2+vòi3)=\(\frac{892}{35}\)
=>vòi1+vòi2+vòi3=\(25\frac{17}{35}h\)
gọi thời gian vòi 1 chảy đầy bể là x(h)(x>0)
thời gian vòi 2 chảy đầy bể là y(h)(y>0)
thời gian vòi 3 chảy đầy bể là z(h)(z>0)
theo đề bài ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=6\left(1\right)\\y+z=8\left(2\right)\\x+z=12\left(3\right)\end{matrix}\right.\)
cộng (1),(2),(3) ta được:
\(2x+2y+2z=26\)
\(\Rightarrow x+y+z=13\left(4\right)\)
từ (1),(2),(3) và (4) suy ra
\(x=5,y=1,z=7\)
vậy chỉ một mình vòi ba thì đầy bể trong 7(h)
Đổi 6 giờ 15 phút = \(\frac{25}{4}\)giờ ; 8 giờ 20 phút = \(\frac{25}{3}\)giờ; 5 giờ
Trong 1 giờ nếu vòi I và vòi II cùng chảy được : \(1:\frac{25}{4}=\frac{4}{25}\)( bể )
Trong 1 giờ nếu vòi II và vòi III cùng chảy được : \(1:\frac{25}{3}=\frac{3}{25}\)( giờ )
Trong 1 giờ nếu vòi I và vòi III cùng chảy được : \(1:5=\frac{1}{5}\)( giờ )
=> Trong 1 giờ nếu 2 lần cả 3 vòi 1 I và II và III chày được : \(\frac{4}{25}+\frac{3}{25}+\frac{1}{5}=\frac{12}{25}\)( bể )
Như vậy trong 1 giờ nếu cả 3 vòi I ; II và III cùng chảy được : \(\frac{12}{25}:2=\frac{6}{25}\)( bể )
Trong 1 giờ riêng vòi I chảy được : \(\frac{6}{25}-\frac{3}{25}=\frac{3}{25}\)( bể )
Trong 1 giờ riêng vòi II chảy được : \(\frac{6}{25}-\frac{1}{5}=\frac{1}{25}\)( bể )
Trong 1 giờ riêng vòi III chảy được : \(\frac{6}{25}-\frac{4}{25}=\frac{2}{25}\)( bể )
Riêng vòi I chảy hết bể trong : \(1:\frac{3}{25}=\frac{25}{3}\)( giờ )
Riêng vòi II chảy hết bể trong : \(1:\frac{1}{25}=25\)( giờ )
Riêng vòi III chảy hết bể trong : \(1:\frac{2}{25}=\frac{25}{2}\)( giờ )
Vậy riêng vòi I chảy hết bể trong 25/3 giờ, riêng vòi II chảy hết bể trong 25 giờ và riêng vòi III chảy hết bể trong 25/2 giờ.