K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

mình cũng vừa trả lời nhưng ko có điểm

17 tháng 1 2018

A D E B C K
Ta có : \(A\widehat{_1}\)=\(\widehat{ADE}\)( 2 góc so le trong , DE // AB )    (1)
           \(\widehat{A_1}=\widehat{A_2}\) ( Góc phân giác của góc A )     (2)
             Từ ( 1) và (2) suy ra : \(\widehat{ADE}\)=\(\widehat{A_2}\)
=> \(\Delta\)ADE là tam giác cân 

26 tháng 2 2018

A B C E D M N P

Qua N kẻ đường thẳng NP // AB (P thuộc BC)

Khi đó ta thấy ngay \(\Delta EBN=\Delta PNB\left(g-c-g\right)\Rightarrow EB=PN;EN=PB\)   (1)

Do NP // AB nên \(\widehat{NPC}=\widehat{EPB}\); do DM // BC nên \(\widehat{ADM}=\widehat{EPB}\)

Suy ra \(\widehat{ADM}=\widehat{NPC}\)

Ta cũng có \(\widehat{DAM}=\widehat{PNC}\)   (Hai góc đồng vị)
\(\Rightarrow\Delta DAM=\Delta PNC\left(g-c-g\right)\)

\(\Rightarrow AM=PC\)   (2)

Từ (1) và (2) suy ra DM + EN = PC + BP = BC.

4 tháng 2 2020

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

4 tháng 2 2020

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b,