K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

ta có 2008+2008*2007=2008*(2007+1)=2008*2008

suy ra A là số chính phương

ta có B chia hết cho 3 mà ko chia het cho 32

suy B ko phải là số chính phương

A = 2008 x 2008

= (2007 + 1) x 2008

= 2007 x 2008 + 2008 x 1

= 2007 x 2008 + 2008

B = 2007 x 2009

= 2007 x (2008 +1)

= 2007 x 2008 + 2007 x 1

= 2007 x 2008 + 2007

Vì 2008 < 2007 => A > B

7 tháng 3 2022

Ta có \(B=2007\times2009\)\(=\left(2008-1\right)\times\left(2008+1\right)\)\(=2008\times2008+2008-2008-1\)\(=2008\times2008-1\)

Vì \(-1< 0\)nên \(2008\times2008-1< 2008\times2008\)hay \(B< A\)

24 tháng 11 2020

Bg

Ta có: A = 2008 + 2007.2008 và B = 2006.2007.2008

Xét A = 2008 + 2007.2008:

=> A = 2008.1 + 2007.2008

=> A = 2008.(1 + 2007)

=> A = 2008.2008

=> A = 20082 

=> A là số chính phương

=> ĐPCM (Điều phải chứng minh)

Xét B = 2006.2007.2008:

=> B = 2.17.59.32.223.23.251   (phân tích thừa số nguyên tố)

=> B \(⋮\)17

Mà B không chia hết cho 172 (vì trong biểu thức của B chỉ có một số là 17, các số còn lại đều không chia hết cho 17)

=> B không phải là số chính phương 

=> ĐPCM

23 tháng 4 2018

Ta có: \((a^{2007}+b^{2007})\left(a+b\right)-\left(a^{2006}+b^{2006}\right)ab\)

\(=\left(a^{2008}+a^{2007}b+ab^{2007}+b^{2008}\right)-\left(a^{2007}b+ab^{2007}\right)\)

\(=a^{2008}+b^{2008}\)

Mà: \(a^{2006}+b^{2006}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)    ( * )

\(\Rightarrow\left(a^{2008}+b^{2008}\right)\left(a+b\right)-\left(a^{2008}+b^{2008}\right)ab=a^{2008}+b^{2008}\)

\(\Leftrightarrow\left(a^{2008}+b^{2008}\right)\left(a+b-ab\right)=a^{2008}+b^{2008}\)

\(\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)

thay vào (*) ta tính dc: 

a=1 thì\(\orbr{\begin{cases}b=1\\b=0\end{cases}}\)                   b=1 thì \(\orbr{\begin{cases}a=1\\a=0\end{cases}}\)

mặt khác a, b dương => a=1, b=1

Khi đó:   \(a^{2009}+b^{2009}=1+1=2\)

Ta có : \(a^{2006}+b^{2016}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)

\(\Leftrightarrow\orbr{\begin{cases}a^{2006}+b^{2006}-\left(a^{2007}+a^{2007}\right)=0\left(1\right)\\a^{2008}+b^{2008}-\left(a^{2007}+b^{2007}\right)=0\left(2\right)\end{cases}}\) 

Cộng (1) với (2)  => \(a^{2008}+b^{2008}-2\left(a^{2007}+b^{2007}\right)+a^{2006}+b^{2006}=0\)

\(\Leftrightarrow a^{2008}-2a^{2007}+a^{2006}+b^{2008}-2b^{2007}+b^{2006}\)

\(\Leftrightarrow a^{2006}\left(a^2-2a+1\right)+b^{2006}\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow a^{2006}\left(a-1\right)^2+b^{2006}\left(b-1\right)^2=0\) (*) 

Vì a , b > 0 và : \(\left(a-1\right)^2\ge0\forall a\) ; \(\left(b-1\right)^2\ge0\forall b\)

Nên : phương trình (*) <=> \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}}\)

Vậy \(S=a^{2009}+b^{2009}=1+1=2\)

2 tháng 1 2015

ko biết thì đừng nói