K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2021

a: Xét tứ giác MNEP có

H là trung điểm của NP

H là trung điểm của ME

Do đó: MNEP là hình bình hành

b: Ta có: MNEP là hình bình hành

=>MN//PE

mà QP//MN

và PE,QP có điểm chung là P

nên E,P,Q thẳng hàng

18 tháng 12 2021

a: Xét ΔABC  có 

D là tđiểm của AB

E là tđiểm của AC

Do đó: DE là đường trung bình

=>DE//FC và DE=FC

hay DECF là hình bình hành

4 tháng 12 2023

loading... a) Do MNPQ là hình chữ nhật (gt)

⇒ NP ⊥ PQ

⇒ NP ⊥ PE

Xét hai tam giác vuông: ∆NHM và ∆PHE có:

NH = HP (gt)

NHM = PHE (đối đỉnh)

⇒ ∆NHM = ∆PHE (cạnh góc vuông - góc nhọn kề)

b) Do ∆NHM = ∆PHE (cmt)

⇒ MN = PE (hai cạnh tương ứng)

Do MNPQ là hình chữ nhật (gt)

⇒ MN // PQ

⇒ MN // PE

Tứ giác MNEP có:

MN // PE (cmt)

MN = PE (cmt)

⇒ MNEP là hình bình hành

c) Do MNPQ là hình chữ nhật

⇒ MN = PQ

Mà MN = PE (cmt)

⇒ PQ = PE

⇒ P là trung điểm của QE

Do N và K đối xứng với nhau qua P (gt)

⇒ P là trung điểm của NK

Do NP ⊥ PQ (cmt)

⇒ NK ⊥ QE

Tứ giác QNEK có:

P là trung điểm của QE (cmt)

P là trung điểm của NK (cmt)

⇒ QNEK là hình bình hành

Mà NK ⊥ QE (cmt)

⇒ QNEK là hình thoi

4 tháng 12 2023

a. Ta có:

- H là trung điểm của NP, nên NH = HM.

- E là giao điểm của MH và PQ, nên HE = EP.

- Ta cũng có NM = NP (do H là trung điểm của NP).

Vậy, ta có NHM ≅ PHE theo nguyên tắc cạnh - cạnh - cạnh.

 

b. Ta có:

- M là trung điểm của NE (do H là trung điểm của NP).

- H là trung điểm của NP (do H là trung điểm của NP).

Vậy, ta có MNEP là hình bình hành theo định nghĩa của hình bình hành.

 

c. Gọi K là điểm đối xứng của N qua P. Ta cần chứng minh tứ giác QNEK là hình thoi.

- Ta có NP = NK (do K là điểm đối xứng của N qua P).

- Ta cũng có NQ = NE (do MNEP là hình bình hành).

- Vì NP = NK và NQ = NE, nên ta có NPQ ≅ NKE theo nguyên tắc cạnh - cạnh - cạnh.

- Do đó, góc NQK = góc NEK.

- Nhưng góc NEK = góc NHE (do NHM ≅ PHE).

- Vậy, góc NQK = góc NHE.

- Ta cũng có góc QNK = góc ENH (do NHM ≅ PHE).

- Vậy, tứ giác QNEK có hai cặp góc đối nhau bằng nhau, nên QNEK là hình thoi theo định nghĩa của hình thoi.

a: Xét ΔPRQ có

E là trung điểm của PR

F là trung điểm của QR

Do đó: EF là đường trung bình của ΔPRQ

Suy ra: FE//PQ

hay PQFE là hình thang

6 tháng 11 2021

a, Vì M là trung điểm AC và BE nên ABCE là hbh

b, Vì ABCE là hbh nên AE//BC;AE=BC(1)

Vì N là trung điểm AB và CF nên ACBF là hbh

Do đó AF//BC;AF=BC(2)

Từ (1)(2) ta được AE trùng AF và AE=AF

Vậy E đx F qua A

a: Xét tứ giác ABCE có 

M là trung điểm của AC

M là trung điểm của BE

Do đó: ABCE là hình bình hành

18 tháng 10 2021

a: Xét tứ giác KFET có 

I là trung điểm của EK

I là trung điểm của FT

Do đó: KFET là hình bình hành

Suy ra: TK//EF

30 tháng 12 2021

a: Xét ΔABC có

E là trung điểm của AC

F là trung điểm của BC

Do đó: FE là đường trung bình

=>FE//DB và FE=DB

hay DEFB là hình bình hành

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.a, Chứng minh tứ giác AECF là hình bình hành.b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.c, Chứng minh tứ giác CIDB là hình thang cân.Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.

a, Chứng minh tứ giác AECF là hình bình hành.

b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.

c, Chứng minh tứ giác CIDB là hình thang cân.

Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại MN. Chứng minh rằng:

a) Tứ giác AKCI là hình bình hành.

b) DM = MN = NB.

c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.  

Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.

a, Tứ giác AEDF là hình gì? Vì sao?

b, Chứng minh: A đối xứng với C qua F.

c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.

0