K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

BẠN ƠI MÌNH MỚI HỌC LỚP BẢY

11 tháng 3 2016

ta có x2-5x+6=x2-2x-3x+6=(x-2)(x-3)

=>x=2 hoặc x=3

14 tháng 4 2022

â) thay m = 6 và phương trình ta đc

\(x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right).\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

NV
14 tháng 4 2022

b.

Phương trình có 2 nghiệm khi: \(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

Pt có 2 nghiệm dương khi \(m>0\)

\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)

\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow5m+2m\sqrt{m}=36\)

Đặt \(\sqrt{m}=t>0\Rightarrow2t^3+5t^2-36=0\)

\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)

\(\Leftrightarrow t=2\Rightarrow\sqrt{m}=2\)

\(\Rightarrow m=4\)

28 tháng 5 2019

x2 – 5x + 6 = 0

⇔ x2 – 2x – 3x + 6 = 0

(Tách để xuất hiện nhân tử chung)

⇔ (x2 – 2x) – (3x – 6) = 0

⇔ x(x – 2) – 3(x – 2) = 0

⇔(x – 3)(x – 2) = 0

⇔ x – 3 = 0 hoặc x – 2 = 0

+ x – 3 = 0 ⇔ x = 3.

+ x – 2 = 0 ⇔ x = 2.

Vậy tập nghiệm của phương trình là S = {2; 3}.

27 tháng 4 2018

Bài tập: Phương trình tích | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

27 tháng 8 2019

24 tháng 4 2017

–  x 2  + 5x – 6 = 0 ⇔ -  x 2  + 2x + 3x – 6 = 0

⇔ - x(x – 2) + 3(x – 2) = 0 ⇔ (x – 2)(3 – x) = 0

⇔ x – 2 = 0 hoặc 3 – x = 0

      x – 2 = 0 ⇔ x = 2

      3 – x = 0 ⇔ x = 3

Vậy phương trình có nghiệm x = 2 hoặc x = 3.

NV
26 tháng 3 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

\(\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

\(=\dfrac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\left(-2\right)-\left(-\dfrac{5}{3}\right)}{-2-\left(-\dfrac{5}{3}\right)+1}=...\)

1 tháng 1 2022

Giải thích các bước giải:

a.Với m=6→x2−5x+6=0→(x−2)(x−3)=0→x∈{2,3}m=6→x2−5x+6=0→(x−2)(x−3)=0→x∈{2,3} 

b.Để phương trình có 2 nghiệm x1,x2x1,x2

→Δ=52−4m≥0→m≤254→Δ=52−4m≥0→m≤254

→{x1+x2=5x1x2=m→{x1+x2=5x1x2=m

Mà |x1−x2|=3→(x1−x2)2=9|x1−x2|=3→(x1−x2)2=9

→(x1+x2)2−4x1x2=9→(x1+x2)2−4x1x2=9

→52−4m=9→52−4m=9

→m=−4

1 tháng 1 2022

a, khi m=6 thì pt\(\Leftrightarrow x^2-5x+6=0\)

                           \(\Leftrightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b,Ta có:\(\Delta=\left(-5\right)^2-4.1.m=25-4m\)

để pt có 2 nghiệm x1, x2 phân biệt thì \(\Delta>0\) hay \(25-4m>0\Rightarrow m< \dfrac{25}{4}\)

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+...+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

=>\(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+...+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

=>1/x+2-1/x+6=1/8

=>\(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)

=>x^2+8x+12=32

=>x^2+8x-20=0

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2

a: Thay m=6 vào pt, ta được:

\(x^2-5x+6=0\)

=>x=2 hoặc x=3

b: \(\text{Δ}=\left(-5\right)^2-4m=-4m+25\)

để phương trình có hai nghiệm thì -4m+25>=0

=>-4m>=-25

hay m<=25/4

Theo đề, ta có: 

\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)

\(\Leftrightarrow25-4m=9\)

=>m=4

23 tháng 2 2022

a, Thay m=6 vào pt ta có:

\(x^2-5x+6=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-5\right)^2-4.1.m\ge0\\ \Leftrightarrow25-4m\ge0\\ \Leftrightarrow m\le\dfrac{25}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=3\\ \Leftrightarrow\left(x_1-x_2\right)^2=3\\ \Leftrightarrow x^2_1+x^2_2-2x_1x_2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\\ \Leftrightarrow5^2-4m=9\\ \Leftrightarrow25-4m=9\\ \Leftrightarrow m=4\left(tm\right)\)