K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

minh moi hoc lop 5

11 tháng 3 2016

mình làm được 1 phần à.

THeo định lý Pytago có :

BC2 = AB2 + AC2 => BC= 4,752+ 6,252 => BC = \(\sqrt{4,75^2+6,25^2}\) 

=> BC = 43,8125 \(\approx\) 43,81 (cm)

Xét 2 tam giác vuông BDI và BEI có :

BI chung

Góc DBI = Góc EBI (vì BI là tia phân giác của góc B)

=> tam giác BDI = tam giác BEI (ch-gn)

=> BD = BE = 4,75 (cm)

Xét ΔBDI vuông tại D và ΔBEI vuông tại E có

BI chung

góc DBI=góc EBI

Do đó: ΔBDI=ΔBEI

=>ID=IE

Xét ΔAEI vuông tại E và ΔAFI vuông tại F có

AI chung

góc EAI=góc FAI

Do đó: ΔAEI=ΔAFI

=>IE=IF=ID

22 tháng 11 2023

a: Xét ΔBDI vuông tại D và ΔBFI vuông tại F có

BI chung

\(\widehat{DBI}=\widehat{FBI}\)

Do đó: ΔBDI=ΔBFI

=>ID=IF

Xét ΔCFI vuông tại F và ΔCEI vuông tại E có

CI chung

\(\widehat{FCI}=\widehat{ECI}\)

Do đó: ΔCFI=ΔCEI

=>IE=IF

b: IE=IF

ID=IF

Do đó: IE=ID

Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

ID=IE

Do đó: ΔADI=ΔAEI

=>\(\widehat{DAI}=\widehat{EAI}\)

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

a: Đề sai rồi bạn

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

Suy ra: BA=BH

c: Ta có: \(\widehat{CAH}+\widehat{BAH}=90^0\)

\(\widehat{MAH}+\widehat{BHA}=90^0\)

mà \(\widehat{BAH}=\widehat{BHA}\)

nên \(\widehat{CAH}=\widehat{MAH}\)

hay AH là tia phân giác của góc MAC

10 tháng 9 2018

Kẻ IF vuông góc với BC   \(\left(IF\in BC\right)\)

Xét tam giác IDB và tam giác IFB ta có :

\(\widehat{BDI}=\widehat{BFI}\left(=90^o\right)\)

\(BI\):  cạnh chung

\(\widehat{IBD}=\widehat{IBF}\)( theo giả thiết )

\(\Rightarrow\Delta IDB=\Delta IFB\)( cạnh huyền - góc nhọn )

\(\Rightarrow ID=IE\)( hai cạnh tương ứng )             (1)

Tương tự : \(\Delta IEC=\Delta IFC\)( cạnh huyền - góc nhọn )

\(\Rightarrow IE=IF\)( hai cạnh tương ứng )               (2)

Từ (1) và (2) => ID = IE           ( đpcm )

9 tháng 1 2022

đpcm là j vậy ạ

 

24 tháng 11 2015

Xét tam giác CID và tam giác CIE có:

IC chung

góc ECT=góc DCI(do CI là tia phân giác góc C)

góc IEC=góc IDC=90 độ

=>tam giác CID=tam giác CIE

=>IE=ID (2 cạnh tương ứng)

 

 

a) Xét \(\Delta BID\)và \(\Delta BIE\)có:

         \(\widehat{IDB}=\widehat{IEC}=90^o\)

          BI là cạnh chung

           \(\widehat{DBI}=\widehat{EBI}\)(BI là tia p/g của \(\widehat{B}\))

\(\Rightarrow\Delta BID=\Delta BIE\left(CH-GN\right)\)

=> ID = IE (2 cạnh tương ứng)  (1)

Xét \(\Delta CIE\)và \(\Delta CIF\)có:

      \(\widehat{IEC}=\widehat{IFC}=90^o\)

       CI là cạnh chung

       \(\widehat{ECI}=\widehat{FCI}\)(CI là tia p/g của \(\widehat{C}\))

\(\Rightarrow\Delta CIE=\Delta CIF\left(CH-GN\right)\)

=> IE = IF (2 cạnh tương ứng) (2)

Từ (1) và (2) => ID = IE = IF

b) 

24 tháng 12 2019

A B C I D E F 1 2 1 2

B)XÉT\(\Delta DAI\) VÀ \(\Delta FAI\)

\(DI=FI\left(CMT\right)\)

\(D_1=F_1=90^o\left(GT\right)\)

AI LÀ CẠNH CHUNG

\(\Rightarrow\Delta DAI=\Delta FAI\left(C-G-C\right)\)

\(\Rightarrow A_1=A_2\)(HAI GÓC TƯƠNG ỨNG)

MÀ AI NẰM GIỮA HAI TIA AD VÀ À

=>AI LÀ PHÂN GIÁC CỦA GÓC A

16 tháng 11 2016

A B C I 90 90 90 D E F

16 tháng 11 2016

Xét tam giác EIC và tam giác FIC có:

IC chung

\(\widehat{ECI}\) = \(\widehat{FCI}\)

\(\widehat{IEC}\) = \(\widehat{IFC}\)

Suy ra 2 tam giác này bằng nhau (1)

 

xét tam giác DBI và tam giác FBI có:

BI chung

góc FBI bằng góc IBD

góc BDI bằng góc IFB

Suy ra 2 tam giác này bằng nhau (2)

Xét tam giác BIF và tam giác CIF có:

IF chung

góc IFC bằng góc IFB

góc IBF bằng góc ICF

Suy ra hai tam giác này bằng nhau (3)

TỪ (1), (2), (3) TA SUY RA ĐOẠN THẲNG IE = ID = IF ( 3 cạnh tương ứng)