So sánh: A=2005^2005+1/2005^2006+1và B=2015^2014+1/2005^2005+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\) < 1 => \(\frac{2005^{2005}+1}{2005^{2006}+1}\) < \(\frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\) = \(\frac{2005^{2005}+2005}{2005^{2006}+2005}\)= \(\frac{2005.\left(2005^{2004}+1\right)}{2005.\left(2005^{2005}+1\right)}\) = \(\frac{2005^{2004}+1}{2005^{2005}+1}\) = B => A<B.
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}\)
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}\)
Vì \(\frac{2004}{2005^{2006}+1}
a) \(\frac{2004}{2005}=1-\frac{1}{2005}\);\(\frac{2005}{2006}=1-\frac{1}{2006}\)
Vì \(\frac{1}{2005}>\frac{1}{2006}\)=>\(1-\frac{1}{2005}< 1-\frac{1}{2006}\)=>\(\frac{2004}{2005}< \frac{2005}{2006}\)
Xét A trước ta có
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)ta có \(2005.A=\frac{2005.\left(2005^{2005}+1\right)}{2005^{2006}+1}\)
\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)\(2005A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)
\(2005.A=1+\frac{2004}{2005^{2006}+1}\)
Xét B ta có
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)ta có \(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}\)
\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)\(2005B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)
\(2005B=1+\frac{2004}{2005^{2005}+1}\)
ta có vì 2005A<2005B
từ đó suy ra A<B
nhớ **** đó
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(\Rightarrow2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)
\(\Rightarrow2005A=1+\frac{2004}{2005^{2006}+1}\)
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(\Rightarrow2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)
\(\Rightarrow2005B=1+\frac{2004}{2005^{2005}+1}\)
Ta thấy \(\frac{2004}{2005^{2005}+1}>\frac{2004}{2005^{2006}+1}\)
Suy ra \(1+\frac{2004}{2005^{2005}+1}>1+\frac{2004}{2005^{2006}+1}\)
hay 2005B>2005A
Vậy B>A