1+2+3+4+5+6+.........+999+1000=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)
Vậy B = - 2016
Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?
oh, đây là những trạng nguyên( môn văn) có chỉ số AQ cao, nên không giỏi toán đâu, bạn nên vào chuyên mục Toán ( online match) để được câu trả lời tốt nhất, vì đó là những thần đồng có chỉ số IQ cao.
( Suy nghĩ của mình, nho tick nha)
\(\frac{999}{1000}+\frac{998}{1000}+......+\frac{1}{1000}\)
\(=\frac{999+998+997+........+1}{1000}\)
\(=\frac{499500}{1000}=\frac{999}{2}\)
1/1000 + ... + 997/1000 + 998/1000 + 999/1000 = ( 1 + ... + 997 + 998 + 999 ) / 1000 = 499500/1000 = 4995/10
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
??????????????????|
\(\frac{2}{3}+\frac{1}{3}=1=\frac{2}{2}\)
\(\frac{3}{4}+\frac{2}{4}+\frac{1}{4}=\frac{6}{4}=\frac{3}{2}\);
\(\frac{4}{5}+\frac{3}{5}+\frac{2}{5}+\frac{1}{5}=2=\frac{4}{2}\)
;\(\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{15}{6}=\frac{5}{2}\)
Tổng quát:
\(\frac{n-1}{n}+\frac{n-2}{n}+...+\frac{2}{n}+\frac{1}{n}\)(\(n\in N\)) \(=\frac{n-1}{2}\)
Áp dụng:
\(\frac{999}{1000}+\frac{998}{1000}+\frac{997}{1000}+...+\frac{1}{1000}=\frac{999}{2}\).
Xem bài mình đúng không?
\(\left(1+2+3+4+5+6+...+999+1000\right)\times\left(0.75\times0.4-\dfrac{3}{4}\times0.3\right)\)
\(=\dfrac{\left(1000+1\right)\times1000}{2}\times\left[0.75\times\left(0.4-0.3\right)\right]\)
\(=500500\times0.75\times0.1=375375\)
Giải:
\(\left(1+2+3+4+5+6+...+999+1000\right).\left(0,75.0,4-\dfrac{3}{4}.0,3\right)\)
Số số hạng \(\left(1+2+3+4+5+6+...+999+1000\right)\) là:
\(\left(1000-1\right):1+1=1000\)
Tổng dãy \(\left(1+2+3+4+5+6+...+999+1000\right)\) là:
\(\left(1+1000\right).1000:2=500500\)
\(\Rightarrow\left(1+2+3+4+5+6+...+999+1000\right).\left(0,75.0,4-\dfrac{3}{4}.0,3\right)\)
\(=500500.\left[0,75.\left(0,4-0,3\right)\right]\)
\(=500500.\left[0,75.0,1\right]\)
\(=500500.0,075\)
\(=37537,5\)
=5005000 nhá
\(\frac{n\left(n+1\right)}{2}=\frac{1000.\left(1000+1\right)}{2}=\frac{1000.1001}{2}=500500\)