cho biểu thức A = 125 x a - 874 + 1256
a) tính giá trị củ biểu thức A khi chia a =967
b) tìm a để biểu thức A = 85506
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4,25\left(x+41,53\right)-125}{\left(3,45+6,55\right):0,1}=\frac{\frac{17}{4}x.+4,25.41,53-125}{10:0,1}\)
\(A=\frac{\frac{17}{4}x+\frac{20601}{400}}{100}\)
Khi x = 58,47
\(A=\frac{\frac{17}{4}.56,47+\frac{20601}{400}}{100}=\frac{588}{200}=2,915\)
b) Với A = 0,535
\(A=\frac{\frac{17}{4}x+\frac{20601}{400}}{100}=0,535\)
\(\frac{17}{4}x=\frac{107}{2}-\frac{20601}{400}=\frac{799}{400}\)
=> x = \(\frac{47}{100}=0,47\)
a, Biết biểu thức A và m,m=59,47 b, Để A= 53,5 ta có:
=>A=4,25 x (59,47 + 40,53) - 125 53,5 = 4,25 x (m + 40,53) -125
A=4,25 x 100 - 125 53,5+125= 4,25 x (m + 40,53) có j sai bạn thông cảm nha
A= 425 - 125 178,5=4,25 x (m + 40,53)
A=325 42=m + 40,53
42 - 40,53 =m
1,47= m
=>m=147
\(A=\frac{5}{2}x+1\) \(B=0,4x-5\)
a) \(A=\frac{5}{2}.\frac{1}{5}+1\) \(B=0,4.\left(-10\right)-5\)
\(A=\frac{1}{2}+1=1\) \(B=-4-5=-9\)
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)
= \(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)
= \(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)
Có vài bước mình làm tắc á nha :>
Bài 1: A = (\(\dfrac{7}{13}\) + \(\dfrac{6}{13}\)) x 100 - 13 x a
Thay a = 10 vào A ta có:
A = (\(\dfrac{7}{13}\) + \(\dfrac{6}{13}\)) x 100 - 13 x 10
A = \(\dfrac{13}{13}\) x 100 - 130
A = 100 - 130
A = - 30
Thay a = 987 vào biểu thức A ta có:
A = (\(\dfrac{7}{13}\) + \(\dfrac{6}{13}\)) x 100 - 13 x 987
A = \(\dfrac{13}{13}\) x 100 - 12831
A = 100 - 12831
A = -12731
a) A = 125 x a - 874 + 1256
Thay a = 967 vào A, ta có:
A = 125 x 967 - 874 +1256
A = 120875 - 874 +1256
A = 121257
b) 85506 = 125 x a - 874 + 1256
85506-1256+874 = 125 x a
85124 = 125 x a
a = 85124 : 125
a = 680,992
b)125xa-874+1256=85506
125xa-874=85506-1256
125xa=84250+874
a=85124:125
a=680.992