Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{BM}=\dfrac{1}{3}\overrightarrow{MC}=\dfrac{1}{3}\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\Rightarrow\overrightarrow{BM}=\dfrac{1}{4}\overrightarrow{BC}\)
\(k\overrightarrow{AN}=\overrightarrow{CN}=\overrightarrow{CA}+\overrightarrow{AN}\Rightarrow\left(1-k\right)\overrightarrow{AN}=\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)
\(\Rightarrow\overrightarrow{AN}=\dfrac{1}{1-k}\overrightarrow{AB}+\dfrac{1}{1-k}\overrightarrow{AD}\)
\(\overrightarrow{AM}.\overrightarrow{DN}=0\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{BM}\right)\left(\overrightarrow{DA}+\overrightarrow{AN}\right)=0\)
\(\Leftrightarrow\left(\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AD}\right)\left(\dfrac{1}{1-k}\overrightarrow{AB}+\dfrac{k}{1-k}\overrightarrow{AD}\right)=0\)
\(\Rightarrow\dfrac{1}{1-k}AB^2+\dfrac{k}{4\left(1-k\right)}AD^2=0\)
\(\Leftrightarrow\dfrac{1}{1-k}+\dfrac{k}{4\left(1-k\right)}=0\Leftrightarrow k=-4\)
Đáp án B
Lời giải:
Có vẻ đề thiếu dữ kiện độ dài $AC$.
Bạn chỉ cần nhớ công thức:
\(\cos \widehat{BAC}=\cos (\overrightarrow{AB}, \overrightarrow{AC})=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\cos 120=\frac{-1}{2}\)
\(\Rightarrow \overrightarrow{AB}.\overrightarrow{AC}=\frac{-1}{2}.|\overrightarrow{AB}|.|\overrightarrow{AC}|=\frac{-1}{2}.AB.AC=\frac{-1}{2}.10.AC\)
Đến đây bạn thay giá trị của $AC$ vào nữa để tính.
\(\overrightarrow{AM}.\overrightarrow{AB}=AM^2=\overrightarrow{AM}^2\)
\(\Leftrightarrow\overrightarrow{AM}\left(\overrightarrow{AB}-\overrightarrow{AM}\right)=0\)
\(\Rightarrow\overrightarrow{AM}.\overrightarrow{MB}=0\)
\(\Rightarrow AM\perp BM\)
\(\Rightarrow\) Quỹ tích là đường tròn đường kính AB
Lời giải:
Để $\overrightarrow{a}$ và $\overrightarrow{b}$ cùng phương thì:
\(\frac{2}{5}=\frac{-3}{m}\Rightarrow m=\frac{-15}{2}\)
Đáp án D.