tim so nguyen p sao cho p^2=1 va p^4+1 cung la so nguyen to. tra loi so nguyen to thoa man la p=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét p = 2 thì p + 2 =4 ( là hợp số )
suy ra p = 2 ( loại )
xét p = 3 thì p + 2 = 5 ( là số nguyên tố )
p + 4 = 7 ( là số nguyên tố )
suy ra p=3( chon )
gia su p la so nguyen to lon hon 3 thi p co dang p=3k + 1 hoac p=3k+2 voi k thuoc n*
với p = 3k + 1
suy ra p+2= 3k+3 =3.( k+1)
suy ra(p+2 chia hết cho 3 vấp+2>3 ( vì p>3)
suy ra p+2 là hợp số
suy ra p=3k+1 ( loại )
voi p =3k+2 thi p+4 =3k+6=3.(k+2)
( p+4 ) chia hết cho 3 và p+4>3 ( p > 3 )
suy ra p+4 la hop so
suy ra p =3k+2 ( loại )
vậy p=3 thì p+2 và p+4 là số nguyên tố
Nếu 4 số nguyên tố đó không có số nào chẵn thì tổng của 4 số là một số chẵn nên chia hết cho 2.
Nếu 4 số nguyên tố đó có số chẵn thì dãy 4 số nguyên tố liên tiếp là:2;3;5;7
Tổng của chúng là:2+3+5+7=17 là số nguyên tố
Nếu cả 4 số nguyên tố đều nhỏ hơn 2 thì 4 số đó phải là số lẻ
=>Tổng 4 số lẻ là số chẵn, lại là số lớn hơn 2 nên tổng không thể là nguyên tố
=>Trong 4 số có 1 số là số 2, các số nguyên tố tiếp theo là 3, 5, 7
Tổng 4 số là:
2+ 3+ 5+ 7= 17
Vậy 17 là số nguyên tố
Đáp số: 2, 3, 5, 7
Đúng thì k cho mình nhé!
A+C , Số cần tìm là 3: Bởi vì nếu số cần tìm là p\(\ne\)3
Thì p chia 3 dư 1 hoặc 2
Ta có p = 3n +1 hoặc p= 3n +2
=> p + 2 = 3n+1+2 =3n +3( chia hết cho 3 không phải là số nguyên tố)
p + 4 = 3n +2 + 4=3n+6 ( chia hết cho 3 không phải là số nguyên tố)
p+ 10= 3n+2 +10= 3n+12 ( chia hết cho 3 không phải là số nguyên tố)
p + 14=3n +1+14 = 3n+15( chia hết cho 3 không phải là số nguyên tố)
B) Câu B đề hơi lạ nên mình đoán đại luôn ^^ ( nếu có thêm p+14 là số nguyên tố thì giải tương tự câu A và C )
Vì p^2+1 và p^4+1 lớn hơn 2 =>p^2+1 và p^4+1 là số lẻ
Vì chẵn + lẻ là lẻ, 1 là số lẻ => p^2 và p^4 là chẵn => p chẵn => p=2
Do p là số nguyên tố mà p < 3
\(\Rightarrow p=2\) Khi đó : \(2p+1=5\) là số nguyên tố
Do đó \(4p+1=4.2+1=9\) là hợp số.
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là : 3k + 1 và 3k + 2
Ta có 2 trường hợp :
* TH1 : p = 3k + 1
\(\Rightarrow\)2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 ) là hợp số
\(\Rightarrow\)Trường hợp này bị loại vì theo đề bài 2p + 1 phải là nguyên tố .
* TH2 : p = 3k + 2
\(\Rightarrow\)2p + 1 = 2 . ( 3k + 2 ) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố .
\(\Rightarrow\)Trường hợp này được chọn vì đúng theo yêu cầu đề bài .
\(\Rightarrow\)4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 ) là hợp số .
Vậy 4p + 1 là hợp số ( đpcm )
là số 2 đó bạn..