K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

`4)(2x^3+3x)/(7-2x)>\sqrt{2-x}(x<=2)`

`<=>(2x^3+3x^2)/(7-2x)-1>\sqrt{2-x}-1`

`<=>(2x^3+3x^2+2x-7)/(7-2x)-((\sqrt{2-x}-1)(\sqrt{2-x}+1))/(\sqrt{2-x}+1)>0`

`<=>(2x^3-2x^2+5x^2-5x+7x-7)/(7-2x)-(1-x)/(\sqrt{2-x}+1)>0`

`<=>((x-1)(2x^2+5x+7))/(7-2x)+(x-1)/(\sqrt{2-x}+1)>0`

`<=>(x-1)((2x^2+5x+7)/(7-2x)+1/(\sqrt{2-x}+1))>0`

`<=>x>1` do `x<=2=>7-2x>0,2x^2+5x+7>0 AA x,\sqrt{2-x}>0,1>0`

`=>(2x^2+5x+7)/(7-2x)+1/(\sqrt{2-x}+1)>0`

`=>1<x<=2`

28 tháng 2 2021

Câu 1:

$\begin{cases}14x^2-21y^2-6x+45y-4=0\\35x^2+28y^2+41x-122y+56=0\\\end{cases}$

`<=>` $\begin{cases}686x^2-1028y^2-174x+294y-196=0\\525x^2+420y^2+615x-1830y+840\\\end{cases}$

Lấy pt đầu trừ pt dưới

`<=>161x^2+483y-1127-483xy-1449y+3381+218x+654y-1519=0`

`<=>161x(x+3y-7)-483y(x+3y-7)+218(x+3y-7)=0`

`<=>(x+3y-7)(161x-483y+218)=0`

Đến đây chia 2 th ta được `(x,y)=(-2,3),(1,2)`

26 tháng 2 2021

\(P=\sum\sqrt[3]{3a+1}=\dfrac{1}{\sqrt[3]{4}}\sum\sqrt[3]{2\cdot2\cdot\left(3a+1\right)}\le\dfrac{1}{3\sqrt[3]{4}}\sum\left(3a+5\right)=3\sqrt[3]{2}\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}.\)

Nãy em sai nha chứ không phải đề sai:vv Buồn ngủ đọc không kỹ đề:vv

 

26 tháng 2 2021

Bài 1.1.8 Khá hay và dễ.

Ta chứng minh: \(\left(1+a^3\right)\left(1+b^3\right)^2\ge\left(1+ab^2\right)^3\)

Áp dụng bất đẳng thức Holder:

\(VT=\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left[1+\left(a\cdot b\cdot b\right)\right]^3=\left(1+ab^2\right)^3\)

Thiết lập hai bất đẳng thức còn lại và nhân theo vế ta thu được đpcm.

Dấu đẳng thức xin dành cho bạn đọc.

Ps:  BTV thì BTV, thấy bài là em giải nha:v

26 tháng 2 2021

`\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=6-18x`

`<=>\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=6-18x`

`<=>(9x-3)/(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4})+6(3x-1)=0`

`<=>(3x-1)(3/(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4})+6)=0`

Ta thấy `3/(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4})+6>0`

`=>3x-1=0`

`=>3x=1`

`=>x=1/3`

Vậy `S={1/3}`

`1/(x^2+9x+20)=1/15-1/(x^2+5x+4)(x ne -1,-4,-5)`

`=>1/((x+4)(x+5))=1/15-1/((x+1)(x+4))`

`=>1/(x+4)-1/(x+5)=1/15-1/((x+1)(x+4))`

`=>3/(x+4)-3/(x+5)=3/15-3/((x+1)(x+4))`

`=>3/(x+4)-3/(x+5)=3/15-1/(x+1)+1/(x+4)`

`=>2/(x+4)-3/(x+5)+1/(x+1)=3/15`

`=>30(x+1)(x+5)-45(x+1)(x+4)+15(x+4)(x+5)=3(x+1)(x+4)(x+5)`

`=>30(x^2+6x+5)-45(x^2+5x+4)+15(x^2+9x+20)=3(x^2+5x+4)(x+5)`

`<=>90x+270=3(x^3+8x^2+29x+20)`

`<=>x^3+24x^2-3x-210=0`

`=>x=-23\or\x=2,85\or\x=-3`

`A=(10^50+2)/(10^50-1)`

`=1+3/(10^50-1)`

Tương tự:

`B=1+3/(10^50-3)`

`10^50-1>10^50-3>0`

`=>3/(10^50-1)<3/(10^50-3)`

`=>A<B`

`20.2^x+1=10.4^2+1`

`=>20.2^x=10.4^2`

`=>2^x=4^2/2=2^3`

`=>x=3`

Vậy x=3

26 tháng 2 2021

C180 : 

    20 . 2x + 1 = 10 . 42 + 1

\(\Leftrightarrow\) 2 . 2x = 42

\(\Leftrightarrow\) 2x + 1 = 24

\(\Leftrightarrow\) x + 1 = 4

\(\Leftrightarrow\) x = 3

Vậy x = 3

 

28 tháng 2 2021

Còn tưởng giải bài tập cơ XD

28 tháng 2 2021

Eo AD có tâm quá điii..

2 tháng 3 2021

2.

\(\left(a+b\right)^2\ge4ab\ge16\Rightarrow a+b\ge4\)

\(\dfrac{a^2+b^2}{a+b}\ge\dfrac{\left(a+b\right)^2}{2\left(a+b\right)}=\dfrac{a+b}{2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{a+b}{2}\ge\dfrac{6}{a+b-1}\)

\(\Leftrightarrow\left(a+b\right)\left(a+b-1\right)-12\ge0\)

\(\Leftrightarrow\left(a+b-4\right)\left(a+b+3\right)\ge0\) (luôn đúng với mọi \(a+b\ge4\))

Dấu "=" xảy ra khi \(a=b=2\)

2 tháng 3 2021

Câu cuối:

Ta chứng minh BĐT phụ sau: với mọi x;y;z dương, ta luôn có: \(\dfrac{x^3+y^3}{x^2+y^2}\ge\dfrac{x+y}{2}\)

Thật vậy, bất đẳng thức tương đương:

\(2\left(x^3+y^3\right)\ge\left(x+y\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (đúng)

Áp dụng:

\(P\ge\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{c+a}{2}=a+b+c\ge6\)

\(P_{min}=6\) khi \(a=b=c=2\)

21 tháng 2 2021

Bài 284 

Ta cần CM \(\left(a+b\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow a^5+b^5+a^4b+ab^4\ge a^5+b^5+a^2b^3+a^3b^2\)

\(\Leftrightarrow a^4b+ab^4\ge a^3b^2+a^2b^3\) \(\Leftrightarrow a^4b-a^3b^2-a^2b^3+ab^4\ge0\)

\(\Leftrightarrow a^3b\left(a-b\right)-ab^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3b-ab^3\right)\ge0\Leftrightarrow\left(a-b\right)ab\left(a^2-b^2\right)\ge0\) \(\Leftrightarrow\left(a-b\right)^2ab\left(a+b\right)\ge0\) luôn đúng với mọi a,b>0 Vậy...

23 tháng 2 2021

c131-136 nhỏ ko đọc đc

 

25 tháng 2 2021

Mọi cố gắng đều không bao giờ vô nghĩa, cố gắng học, cố gắng làm, tuy sự cố gắng có thể chưa nhiều nhưng ''tích tiểu thành đại'' một lúc nào đó nó sẽ thành công. Từ bức ảnh này có thể thấy, mỗi con số vô cùng nhỏ nhưng số mũ lại rất lớn, làm cho kết quả cũng lớn theo. Số mũ này còn tượng trưng cho 365 ngày trong năm, mỗi ngày là con số kia, sau 1 năm, kết quả đã lớn đến nhường nào. Đôi khi trong quá trình cố gắng, gặp khó khăn, nếu chúng ta từ bỏ, thì cố gắng từ trước đến này cũng bằng không. Bản thân mình trước kia cũng từng là một đứa nghiện game, truyện tranh đến mức bị mẹ dọa cho nghỉ học, bản thân mình lúc đó cũng chưa nghĩ gì nhiều, nhưng thấy kết quả học chưa tốt, bố mẹ lo lắng, mình đã bỏ qua tất cả, cố gắng học từng chút một, có thể là giờ cái sự cố gắng của mình nó chưa lớn như người khác nhưng mình chưa từ bỏ nó một lần nào, mình hi vọng sẽ có một ngày nào mình thành công trên con đường mình đã chọn. Nói chung lại, cố gắng sẽ khiến bản thân ta thay đổi, thành công sẽ đến gần hơn 

P/s lại viết ''ngựa ngựa'' đây :)))

 

Cuộc thi có vẻ rất vui và thú vị :^

24 tháng 2 2021

139:

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\left(a,b,c>0\right)\)

GT \(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{3}{abc}\Rightarrow a+b+c=3\)

\(\Rightarrow\dfrac{y^2}{xy^2+2x^2}=\dfrac{1}{b^2}:\left(\dfrac{1}{ab^2}+\dfrac{2}{a^2}\right)=\dfrac{1}{b^2}:\left(\dfrac{a+2b^2}{a^2b^2}\right)=\dfrac{a^2}{a+2b^2}=a-\dfrac{2ab^2}{a+2b^2}\ge a-\dfrac{2ab^2}{3b\sqrt[3]{ab}}=a-\dfrac{2}{3}\sqrt[3]{a^2b^2}\ge a-\dfrac{2}{9}\left(a+b+ab\right)\) Tương tự ta được: 

\(\dfrac{x^2}{zx^2+2z^2}=\dfrac{c^2}{c+2a^2}=c-\dfrac{2ca^2}{c+2a^2}\ge c-\dfrac{2}{9}\left(c+a+ac\right)\)

\(\dfrac{z^2}{yz^2+2y^2}=\dfrac{b^2}{b+2c^2}=b-\dfrac{2bc^2}{b+2c^2}\ge b-\dfrac{2}{9}\left(b+c+bc\right)\)

\(\Rightarrow\dfrac{y^2}{xy^2+2x^2}+\dfrac{x^2}{zx^2+2z^2}+\dfrac{z^2}{yz^2+2z^2}\ge\left(a+b+c\right)-\dfrac{2}{9}\left(2a+2b+2c+ab+bc+ca\right)\) \(\ge3-\dfrac{2}{9}\left[6+\dfrac{\left(a+b+c\right)^2}{3}\right]=3-\dfrac{2}{9}\left(6+\dfrac{9}{3}\right)=3-\dfrac{2}{9}\cdot9=1\)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\Rightarrow x=y=z=3\)

25 tháng 2 2021

câu trả lời :

Đặt x=1a,y=1b,z=1c(a,b,c>0)x=1a,y=1b,z=1c(a,b,c>0)

GT ⇒1ab+1bc+1ca=3abc⇒a+b+c=3⇒1ab+1bc+1ca=3abc⇒a+b+c=3

⇒y2xy2+2x2=1b2:(1ab2+2a2)=1b2:(a+2b2a2b2)=a2a+2b2=a−2ab2a+2b2≥a−2ab23b3√ab=a−233√a2b2≥a−29(a+b+ab)

18 tháng 2 2021

Chưa like anh ạ=))

18 tháng 2 2021

de nhu the ai nhin dc :))))