Số các cặp (x;y;z) nguyên (x\(\ge\)y>=z)thoả mãn !x!+!y!+!z!=2
Chú ý:!x! là giá trị tuyệt đối của x. Bạn nào biết viết giá trị tuyệt đối thì chỉ mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x,y nguyên mà |x| + |y| = 2
<= > x , y \(\le\) 2
TH1: |x| = 0 ; |y| = 2 => có 2 trường hợp
TH2: |x| = 1 ; |y| = 1 => có 4 trường hợp
TH3: |x| = 2 ; |y| = 0 => Có 2 trường hợp
Vậy có tất cả: 2 + 4 + 2= 8 trường hợp
TH1 : x = 1 và y = 2
TH2 : x = -1 và y = -1
TH3 : x = -2 hoặc 2 và y = 0
TH4 : x= 0 và y = -2 hoặc 2
**** đúng nha
TH1 : x=1 và y=2
TH2 : x= -1 và y= -1
TH3 :x=-2 hoặc 2 và y=0
TH4 : x=0 và y = -2 hoặc 2
ta có 3G = 1,5.2 A → G = A.
Mà G + A = 50% → A = G = T = X = 25%.
(1:1:0)(1:0:1)(0:1:1)(2:0:0)(0:2:0)(0:0:2) => 6 cặp
(-1:-1:0)(1:-1:0)(-1:1:0)(0:-1:-1)(0:1:-1)(0:-1:1)(1:0:-1)(-1:0:-1)(-1:0:-1)(0:0:-2)(0:-2:0)(2:0:0) 12 cặp + 6 cặp trên là 18 cặp