cho tam giác ABC. Dựng ra phía ngoài tam giác các hình vuông ABDE và ACFG. Gọi Q,N lần lượt là giao điểm các đường chéo của hình vuông ABDE và hình vuông ACFG; gọi M,P lần lượt là trung điểm BC và EG. CMR tứ giác MNPQ là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
\(\frac{AX}{YC}\)=\(\frac{AO}{OC}\)=\(\frac{AB}{DC}\)=\(\frac{AX}{DY}\)
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
\(\frac{AX}{DY}\)=\(\frac{SX}{XY}\)=\(\frac{XB}{YC}\)
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
Ta cũng dễ dàng chứng mình được đường thẳng chứa 4 điểm đó là trùng trực của hai cạnh đấy sao khi chừng minh chúng thẳng hàng ở trên nhé!
Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
AXYCAXYC=AOOCAOOC=ABDCABDC=AXDYAXDY
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
AXDYAXDY=SXXYSXXY=XBYCXBYC
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
bạn tự vẽ hình nhé
CM tam giác ABC= tam giác AEG
\(\Rightarrow\)góc GEA= góc ABC
góc EGA = góc ACB
ta có góc HAC= góc ABH ( cùng phụ goc BAH)
góc OAE= góc HAC
\(\Rightarrow\) góc OEA= góc OAE
\(\Rightarrow\)OA=OE
CMTT: OA=OG
suy ra OE=OG (1)
ta có góc GAC+ HAC+BAH=180độ
mà BAH=OAG
 \(\Rightarrow\) OAG+GAC+HAC=180 độ
O,A ,H thẳng hàng(2)
từ 1 va 2 suy ra đfcm
O là trung điểm EG
a. Ta thấy \(\widehat{EAC}=\widehat{BAH}\left(=\widehat{BAC}+90^o\right)\)
Vậy nên \(\Delta EAC=\Delta BAH\left(c-g-c\right)\)
Từ đó suy ra \(\widehat{ACE}=\widehat{AHB}\)
Vì \(\widehat{AHB}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{ACE}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{HJC}=90^o\)
Vậy \(EC\perp BH.\)
b. Ta thấy \(O_1\) là trung điểm EB. Vậy thì O1I là đường trung bình của tam giác BEC hay O1I // EC. Tương tự O2I // BH.
Lại có \(EC\perp BH\) nên \(O_1I\perp O_2I.\)
Vậy tam giác O1O2I là tam giác vuông tại I.