So sanh: \(4+\sqrt{33}\) va \(\sqrt{29}+\sqrt{14}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)
Có: \(\sqrt{16}>\sqrt{14}\)
\(\sqrt{33}>\sqrt{29}\)
=> \(\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
=> \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
\(\text{Ta có : }\hept{\begin{cases}4>\sqrt{14}\left(\sqrt{16}>\sqrt{14}\right)\\\sqrt{33}>\sqrt{29}\left(\text{luôn đúng}\right)\end{cases}}\)
\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
\(\text{Vậy }4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
Ta Đặt :
A = 4 + \(\sqrt{33}\)
=> A2 = \(\left(4+\sqrt{33}\right).\left(4+\sqrt{33}\right)\)
=> A2 = 4 . 4 + 4 . \(\sqrt{33}\)+ \(\sqrt{33}\). 4 + \(\sqrt{33}\). \(\sqrt{33}\)
=> A2 = 16 + 2.4\(\sqrt{33}\)+33
=> A2 = 49 + 8\(\sqrt{33}\)
Đặt B = \(\sqrt{29}+\sqrt{14}\)
=> B2 = \(\left(\sqrt{29}+\sqrt{14}\right).\left(\sqrt{29}+\sqrt{14}\right)\)
=> B2 = \(\sqrt{29}\). \(\sqrt{29}\)+ \(\sqrt{29}\).\(\sqrt{14}\)+ \(\sqrt{14}\). \(\sqrt{29}\)+ \(\sqrt{14}\).\(\sqrt{14}\)
=> B2 = 29 + 2\(\sqrt{14}\).\(\sqrt{29}\)+ 14
=> B2 = 43 + 2\(\sqrt{14}\).\(\sqrt{29}\)
Ta có :
A = M + I
B = N + O
Đặt I = 49
Đặt O = 43
Vì 49 > 43 => I > O(1)
Đặt M = 2 . 4\(\sqrt{33}\)
=> M2 = 4 . 16 . 33 = 2112
Đặt N = 2\(\sqrt{14}\).\(\sqrt{29}\)
=> N2 = 4 . 14 . 29 = 1624
Vì M2 > N2
=> M > N (2)
Từ (1) và (2)
=> A > B
MỆT QUÁ ! CHO MÌNH TÍCH NHA MẤT KHOẢNG TIẾNG ĐỒNG HỒ
ĐÂY LÀ CÁCH LÀM BÀI CỦA LỚP 7 MÌNH MỚI ĐƯỢC HỌC ĐẤY !
CÁCH LỚP 7 NÊN NÓ DÀI NHA BẠN ! THÔNG CẢM
a: \(\left(4+\sqrt{33}\right)^2=49+8\sqrt{33}=49+2\cdot\sqrt{528}\)
\(\left(\sqrt{29}+\sqrt{14}\right)^2=43+2\cdot\sqrt{29\cdot14}=43+2\cdot\sqrt{406}\)
mà 49>43 và 528>406
nên \(\left(4+\sqrt{33}\right)^2>\left(\sqrt{29}+\sqrt{14}\right)^2\)
=>\(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
a) Ta có: \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}\)
Vì \(\sqrt{16}>\sqrt{14};\sqrt{33}>\sqrt{29}\)
\(\Rightarrow4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
b) Ta có: \(\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}\)
Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$
Lời giải:
a)
Đặt $2^{10}=a; 3^{10}=b; 4^{10}=c$ trong đó $a,b,c>0$ và $a\neq b\neq c$
Khi đó:
Xét hiệu \(2^{30}+3^{30}+4^{30}-3.24^{10}=a^3+b^3+c^3-3abc\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\)
\(=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]\)
Vì $a,b,c>0\Rightarrow a+b+c>0$
$a\neq b\neq c\Rightarrow (a-b)^2>0; (b-c)^2>0; (c-a)^2>0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2>0$
Do đó:
$2^{30}+3^{30}+4^{30}-3.24^{10}=\frac{a+b+c}{2}[(a-b)^2+(b-c)^2+(c-a)^2]>0$
$\Rightarrow 2^{30}+3^{30}+4^{30}>3.24^{10}$
b)
Có: $4=\sqrt{16}>\sqrt{14}$
$\sqrt{33}>\sqrt{29}$
Cộng theo vế:
$4+\sqrt{33}>\sqrt{14}+\sqrt{29}$
Ta co:\(4+\sqrt{33}=\approx9,744562647\)
\(\sqrt{29}+\sqrt{14}=\approx9,126822194\)
Vi 9,744562647>9,126822194 nen \(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)