K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2021

lớp 6a6 à

9 tháng 8 2023

Với số tự nhiên \(n\ge2\) bất kì, gọi \(N=1.2.3...n\left(n+1\right)\)

Xét các số \(N+2,N+3,...,N+n+1\), ta thấy:

\(N+2=1.2.3...n\left(n+1\right)+2⋮2\) nên \(N+2\) là hợp số.

\(N+3=1.2.3...n\left(n+1\right)+3⋮3\) nên \(N+3\) là hợp số.

...

\(N+n+1=1.2.3...n\left(n+1\right)+n+1⋮n+1\) nên \(N+n+1\) là hợp số.

 Vậy \(N+i\) là hợp số với mọi \(2\le i\le n+1\). Có tất cả \(n\) số \(N+i\), suy ra đpcm.

8 tháng 8 2023

Xét dãy các số: (�+1)!+2,(�+1)!+3,...,(�+1)!+�+1.

Có (�+1)!+�⋮�mà (�+1)!+�>�nên số đó là hợp số. 

 =>Vậy dãy số trên gồm toàn hợp số. 

9 tháng 2 2020

1001!+2,1001!+3,...,1001!+1001

5 tháng 2 2020

1) cho 2005 số đó là 2006!+2,2006!+3,2006!+4,...,2006!+2006

Ta thấy 2006!+2 chia hết cho 2

             2006!+3 chia hết cho 3

             2006!+4 chia hết cho 4

             .....................................

             2006!+2006 chia hết cho 2006

Vậy cả 2005 số trên đều là hợp số

-> điều phải chứng minh

15 tháng 1 2018

gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3

4 tháng 1 2022

.