chứng tỏ rằng luôn chỉ ra được 2016 số tự nhiên liên tiếp đều là hợp số cả
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với số tự nhiên \(n\ge2\) bất kì, gọi \(N=1.2.3...n\left(n+1\right)\)
Xét các số \(N+2,N+3,...,N+n+1\), ta thấy:
\(N+2=1.2.3...n\left(n+1\right)+2⋮2\) nên \(N+2\) là hợp số.
\(N+3=1.2.3...n\left(n+1\right)+3⋮3\) nên \(N+3\) là hợp số.
...
\(N+n+1=1.2.3...n\left(n+1\right)+n+1⋮n+1\) nên \(N+n+1\) là hợp số.
Vậy \(N+i\) là hợp số với mọi \(2\le i\le n+1\). Có tất cả \(n\) số \(N+i\), suy ra đpcm.
Xét dãy các số: .
Có mà nên số đó là hợp số.
=>Vậy dãy số trên gồm toàn hợp số.
1) cho 2005 số đó là 2006!+2,2006!+3,2006!+4,...,2006!+2006
Ta thấy 2006!+2 chia hết cho 2
2006!+3 chia hết cho 3
2006!+4 chia hết cho 4
.....................................
2006!+2006 chia hết cho 2006
Vậy cả 2005 số trên đều là hợp số
-> điều phải chứng minh
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3