K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$

$=(x^2+2xy+y^2)+2x+y^2+4y+2021$

$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$

$=(x+y+1)^2+(y+1)^2+2019\geq 2019$

Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$

$\Leftrightarrow (x,y)=(0,-1)$

13 tháng 10 2019

\(A=x^2+2y^2+2xy+2x-4y+2016\)

\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)

Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)

Hay \(A\ge2006;\forall x,y\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

13 tháng 10 2019

Mình làm có gì sai hả @@ 

5 tháng 4 2017

A=x2+2y2+2xy+2x-4y+2013

=x2+y2+1+2xy+2x+2y+y2-6y+9+2003

=(x+y+1)2+(y-3)2+2003

Min A=2003 tại x=-4;y=3

5 tháng 4 2017

A= (X2+2XY+Y2) + 2(X+Y)+1+Y2-6Y+9+2003

A=(X+Y)2+ 2(X+Y)+1+(Y-3)2+2003

A=(X+Y+1)2+(Y-3)2+2003

=> A>=2003

(DẤU "=" XẢY RA KHI X=-4;Y=3)

13 tháng 7 2021

Đặt `A=2x^2+2y^2+2xy-4x+4y+2021`

`<=>2A=4x^2+4y^2+4xy-8x+8y+4042`

`<=>2A=4x^2+4xy+y^2-8x-4y+3y^2+12y+4042`

`<=>2A=(2x+y)^2-4(2x+y)+4+3y^2+12y+12+4026`

`<=>2A=(2x+y-2)^2+3(y+2)^2+4026>=4026`

`=>A>=2013`

Dấu "=" xảy ra khi `y=-2,x=(2-y)/2=2`

27 tháng 7 2021

Cảm ơn bạn nhiều nha

 

NV
25 tháng 12 2020

\(A=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-6y+9\right)+2018\)

\(A=\left(x+y+1\right)^2+\left(y-3\right)^2+2018\ge2018\)

\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)

25 tháng 12 2020

Giúp mk bài hình mk mới đăng với Nguyễn Việt Lâm Quản lý, ý b,c, d thôi

Bài 2: 

a: \(=-\left(x^2+2x-100\right)\)

\(=-\left(x^2+2x+1-101\right)\)

\(=-\left(x+1\right)^2+101< =101\)

Dấu = xảy ra khi x=-1

b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)

Dấu = xảy ra khi x=1/6

c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)

\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)

\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)

Dấu = xảy ra khi x=3 và y=-1

29 tháng 6 2019

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

29 tháng 6 2019

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1

14 tháng 7 2017

M = 5 - x2 + 2x - 4y2 - 4y

= (- x2 + 2x - 1) + (- 4y2 - 4y - 1) + 7

= 7 - (x - 1)2 - (2y + 1)2\(\le7\)

Dấu "=" xảy ra khi x = 1 và y = - 0,5

(^~^)

M = - x2 + 2xy - 4y2 + 2x + 10y - 8

- M = x2 - 2xy + 4y2 - 2x - 10y + 8

= (y2 + 1 + x2 + 2y - 2xy - 2x) + (3y^2 - 12y + 12) - 5

\(=\left(y+1-x\right)^2+3\left(y-2\right)^2-5\ge-5\)

\(\Rightarrow M\le5\)

Dấu "=" xảy ra khi y = 2 và x = 3.

NV
16 tháng 8 2020

\(C=2\left(x-\frac{5}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\Rightarrow C_{min}=\frac{7}{8}\)

\(D=\left(x^2+4xy+4y^2\right)+\left(y^2+y+\frac{1}{4}\right)+\frac{8083}{4}\)

\(D=\left(x+2y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{8083}{4}\ge\frac{8083}{4}\)

\(E=\frac{1}{2}\left(4x^2+y^2+\frac{9}{4}-4xy-6x+3y\right)+\frac{1}{2}\left(y^2+y+\frac{1}{4}\right)+\frac{15}{4}\)

\(E=\frac{1}{2}\left(2x-y-\frac{3}{2}\right)^2+\frac{1}{2}\left(y+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)

\(A=-\left(x-2\right)^2+11\le11\)

\(B=-\left(x+\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)

\(C=-\left(x-3y\right)^2-\left(y-2\right)^2+11\le11\)