Mệnh đề sau đây đúng hay sai? Chứng minh rằng mệnh đề này đúng hoặc mệnh đề này sai:
\(sin^2A+sin^2B+sin^2C\le\dfrac{9}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đl sin có:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow b=a\dfrac{sinB}{sinA};c=\dfrac{sinC}{sinA}.a\)
Mà `b+c=2a`
\(\Rightarrow a\dfrac{sinB}{sinA}+a\dfrac{sinC}{sinA}=2a\\ \Rightarrow\dfrac{sinB}{sinA}+\dfrac{sinC}{sinA}=2\\ \Leftrightarrow sinB+sinC=2sinA\)
Chọn B
Tồn tại số nguyên mà bình phương của nó bằng chính nó.
Mệnh đề này đúng vì 0 ∈ Z; 02 = 0, 12 = 1.
Với mọi n thuộc tập số nguyên, n + 1 lớn hơn n
Mệnh đề này đúng
Mệnh đề này chưa chắc đúng
VD: 48 chia hết cho 12 nhưng không chia hết cho 9
Mệnh đề I sai vì không có căn bậc hai của số âm.
Mệnh đề IV sai vì √100 = 10(căn bậc hai số học)
Các mệnh đề II và III đúng.
Vậy chọn câu C
Lời giải:
Không mất tổng quát giả sử $C$ là góc nhọn.
\(\sin ^2A+\sin ^2B+\sin ^2C=\frac{1-\cos 2A}{2}+\frac{1-\cos 2B}{2}+\sin ^2C\)
\(=1+\sin ^2C-\frac{1}{2}(\cos 2A+\cos 2B)=1+\sin ^2C-\cos (A+B)\cos (A-B)\)
\(=1+\sin ^2C-\cos (180^0-C)\cos (A-B)\)
\(=1+\sin ^2C+\cos C\cos (A-B)=2-\cos ^2C+\cos C\cos (A-B)\)
\(\leq 2-\cos ^2C+\cos C\) với mọi $C$ nhọn
\(=\frac{9}{4}-(\cos C-\frac{1}{2})^2\leq \frac{9}{4}\)
Do đó mệnh đề đã cho đúng.