Cho tam giác ABC vuông tại A có AM là đường cao a) chứng minh AB.BC=AB.AC b)biết AB=30cm,AC=40cm.Tính AM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
Suy ra: BC/BA=AC/AH
hay \(BC\cdot AH=BA\cdot AC\)
b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có
góc HAM chung
Do đó: ΔAMH\(\sim\)ΔAHB
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên BC=2AM
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AB^2=BH\cdot BC\)
hay \(AB^2=2\cdot BH\cdot AM\)
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
b: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//KH
c: Ta có: AC//HK
AC//HM
HK,HM có điểm chung là H
Do đó: K,H,M thẳng hàng
Ta có: AMHN là hình chữ nhật
=>\(\widehat{NAH}=\widehat{NMH}\)
mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)
nên \(\widehat{NMH}=\widehat{CKH}\)
Xét tứ giác MNCK có CN//MK
nên MNCK là hình thang
Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)
nên MNCK là hình thang cân
d: Ta có: AMHN là hình chữ nhật
=>AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Xét ΔCAH có
CO,AI là các đường trung tuyến
CO cắt AI tại D
Do đó: D là trọng tâm của ΔCAH
=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)
=>AK=3AD
\(a,\) Sai đề, sửa: \(AM.BC=AB.AC\)
Vì \(\widehat{AMB}=\widehat{BAC}=90^0;\widehat{B}\) chung nên \(\Delta ABC \backsim \Delta MBA(g.g)\)
Do đó \(\dfrac{BC}{AB}=\dfrac{AC}{AM}\Rightarrow AM.BC=AB.AC\)
\(b,\) Áp dụng pytago: \(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)
Do đó \(AM=\dfrac{AB.AC}{BC}=24\left(cm\right)\)
a: Xét ΔABC vuông tại A có AM là đường cao
nên \(AM\cdot BC=AB\cdot AC\)