K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

\(a,\) Sai đề, sửa: \(AM.BC=AB.AC\)

Vì \(\widehat{AMB}=\widehat{BAC}=90^0;\widehat{B}\) chung nên \(\Delta ABC \backsim \Delta MBA(g.g)\)

Do đó \(\dfrac{BC}{AB}=\dfrac{AC}{AM}\Rightarrow AM.BC=AB.AC\)

\(b,\) Áp dụng pytago: \(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)

Do đó \(AM=\dfrac{AB.AC}{BC}=24\left(cm\right)\)

16 tháng 12 2021

a: Xét ΔABC vuông tại A có AM là đường cao

nên \(AM\cdot BC=AB\cdot AC\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

Suy ra: BC/BA=AC/AH

hay \(BC\cdot AH=BA\cdot AC\)

b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có

góc HAM chung

Do đó: ΔAMH\(\sim\)ΔAHB

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

ĐIểm $M$ là điểm nào thế bạn? 

 

a: Ta có: ΔABC vuông tại A 

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên BC=2AM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB^2=BH\cdot BC\)

hay \(AB^2=2\cdot BH\cdot AM\)

Đề sai rồi bạn

10 tháng 11 2021

để hỏi lại cô

 

23 tháng 12 2023

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

b: Xét tứ giác AHKC có

I là trung điểm chung của AK và HC

=>AHKC là hình bình hành

=>AC//KH

c: Ta có: AC//HK

AC//HM

HK,HM có điểm chung là H

Do đó: K,H,M thẳng hàng

Ta có: AMHN là hình chữ nhật

=>\(\widehat{NAH}=\widehat{NMH}\)

mà \(\widehat{NAH}=\widehat{CKH}\)(AHKC là hình bình hành)

nên \(\widehat{NMH}=\widehat{CKH}\)

Xét tứ giác MNCK có CN//MK

nên MNCK là hình thang

Hình thang MNCK có \(\widehat{CKM}=\widehat{NMK}\)

nên MNCK là hình thang cân

d: Ta có: AMHN là hình chữ nhật

=>AH cắt MN tại trung điểm của mỗi đường

=>O là trung điểm chung của AH và MN

Xét ΔCAH có

CO,AI là các đường trung tuyến

CO cắt AI tại D

Do đó: D là trọng tâm của ΔCAH

=>\(AD=\dfrac{2}{3}AI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{3}AK\)

=>AK=3AD