Cho tam giác ABC có AB < AC. Hai trung tuyến BE và CF cắt nhau tại G. Gọi D là trubg điểm của BC, chứng minh:
a, AGD thẳng hàng
b, BE < CF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<Tự vẽ hình nha>
a)Xét ΔABE và ΔACF
góc AEB=góc AFC
góc BEA=góc CFA
Vậy ΔABE ∼ ΔACF(g.g)
⇒\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC
⇒\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)
b)Xét ΔAEF và ΔABC
Góc A:chung
\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)
Vậy ΔAEF∼ΔABC (g.g)
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>FE/BC=AE/AB
=>FE*AB=AE*BC
a: Xét ΔABE và ΔACF có
góc AEB=góc AFC
góc BAE chung
=>ΔABE đồng dạng với ΔACF
b: ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
=>EF/BC=AE/AB
=>AE*BC=AB*EF
hình bạn tự vẽ nhé
A B C D E F G I 1 2
a) Tam giác ABC có 2 trung tuyến BE và CF cắt nhau tại G
=> G là trọng tâm tam giác => G thuộc trung tuyến AD Hay A; G; D thẳng hàng
b) +) Chứng minh được : góc BAD > DAC (xem phần sau)
Trong tam giác ABC có AB < AC nên góc ACB < ABC
=> góc BAD + ABC > góc DAC + ACB
=> 180o - (BAD + ABC) < 180o - (DAC + ACB)
=> góc D1 < D2
+) Từ D1 < D2 => BG < CG (xem phần sau)
Theo tính chất trung tuyến BG = 1/3 BE ; CG = 2/3 CF
=> BE < CF