Cho tam giác ABC. Chứng minh rằng: nếu có vtAB.vtBC = vtBC.vtCA thì tam giác cân.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NV
Nguyễn Việt Lâm
Giáo viên
21 tháng 2 2021
\(\dfrac{b^2-a^2}{2c}=b.\dfrac{\left(b^2+c^2-a^2\right)}{2bc}-a.\dfrac{\left(a^2+c^2-b^2\right)}{2ac}\)
\(\Leftrightarrow\dfrac{b^2-a^2}{2c}=\dfrac{b^2+c^2-a^2}{2c}-\dfrac{a^2+c^2-b^2}{2c}\)
\(\Leftrightarrow b^2-a^2=\left(b^2+c^2-a^2\right)-\left(a^2+c^2-b^2\right)\)
\(\Leftrightarrow3b^2=3a^2\Leftrightarrow a=b\)
Hay tam giác cân tại C
DD
Đoàn Đức Hà
Giáo viên
4 tháng 6 2021
Giả sử \(AB< AC\). Lấy \(J\in AC\)sao cho \(AJ=AB\).
Khi đó \(AC+BI=AJ+JC+BI>AB+JC+IJ>AB+CI\).
Mâu thuẫn giả thiết.
Tương tự với \(AB>AC\).
Do đó \(AB=AC\)hay tam giác \(ABC\)cân tại \(A\).