Cho đường tròn tâm O bán kính R=6cm và điểm A cách O một khoảng 10cm từ A vẽ tiếp tuyến AB ( B là tiếp điểm) và cát tuyến bất kỳ ADC ( C nằm giữa A và D) gọi I là trung điểm của đoạn CD
a) tính độ dài AB, số đo góc OAB
b) chứng minh: bốn điểm A,B,O và I cùng thuộc 1 đường tròn
c) chứng minh: AC.AD=AI^2-IC^2. Từ đó suy ra tính AC.AD không đổi khi C thay đổi trên đường tròn (O)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
13 tháng 10 2021
a: Xét ΔOAB vuông tại B có
\(OA^2=OB^2+AB^2\)
hay AB=8(cm)
25 tháng 5 2022
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp(1)
Xét tứ giác OHMB có \(\widehat{OHM}+\widehat{OBM}=180^0\)
nên OHMB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra O,H,A,M,B cùng thuộc đường tròn
b: Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó:ΔMAC\(\sim\)ΔMDA
Suy ra: MA/MD=MC/MA
hay \(MA^2=MD\cdot MC=MO^2-R^2\)