cho hai duong tron tam I va K cung co ban kinh 1.5 cm. Chung cat nhau tai A va B. Ve day cung AC cua duong tron tam I sao cho AC=AB. CM: ^IAK=^IAB=^KAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Băng Băng 2k6Vũ Minh TuấnNguyễn Việt LâmHISINOMA KINIMADONguyễn Lê Phước ThịnhNguyễn Thị Ngọc ThơNguyễn Thanh HiềnQuân Tạ Minhtth
a: Gọi giao của DI với BC là G
góc BMC=góc BAC=1/2*180=90 độ
=>BM vuông góc DC; CA vuông góc DB
Xet ΔDBC có
BM,CA là đường cao
BM cắt CA tại I
=>I là trực tâm
=>DI vuông góc BC tại G
góc DAI+góc DMI=90+90=180 độ
=>DAIM nội tiếp
b: góc ADI=90 độ-góc DBC
góc ACB=90 độ-góc DBC
=>góc ADI=góc ACB
=>góc ADI=1/2*góc AOB
a) Dễ có tứ giác BCEF nội tiếp đường tròn (BC). Suy ra ^BPQ = ^AFE = ^ECB = ^BCQ
Vậy tứ giác BPCQ nội tiếp (Quỹ tích cung chứa góc) (đpcm).
b) Có ^BPQ = ^BCQ = ^BFD (cmt) hay ^DPF = ^DFP. Vậy \(\Delta\)DPF cân tại D (đpcm).
c) Dễ thấy NE là tiếp tuyến của (AEF), suy ra ^NEF = ^EAF = ^BDF = 1800 - ^FDN
Suy ra tứ giác DFEN nội tiếp. Khi đó \(\Delta\)MFD ~ \(\Delta\)MNE (g.g). Vậy MF.ME = MD.MN (đpcm).
d) Ta thấy ^FDB = ^EDC (=^BAC); ^DNE = ^DFM (Vì tứ giác DFEN nội tiếp)
Do đó \(\Delta\)DEN ~ \(\Delta\)DMF (g.g). Từ đây DN.DM = DE.DF (1)
Từ câu b, ta có \(\Delta\)DPF cân tại D (DF = DP). Tương tự DE= DQ (2)
Từ (1) và (2) suy ra DN.DM = DP.DQ dẫn đến \(\Delta\)DPM ~ \(\Delta\)DNQ (c.g.c)
Suy ra 4 điểm M,P,Q,N cùng thuộc một đường tròn hay (MPQ) đi qua N cố định (đpcm).