K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

từ x-y=9=>x=y+9

thay x=y+9 vào B  ta được:

\(\frac{7x-9}{6x+y}=\frac{7\left(y+9\right)-9}{6\left(y+9\right)+y}=\frac{7y+63-9}{6y+54+y}=\frac{7y+54}{\left(6y+y\right)+54}=\frac{7y+54}{7y+54}=1\) (1)

\(\frac{7x+9}{8x-y}=\frac{7\left(y+9\right)+9}{8\left(y+9\right)-y}=\frac{7y+63+9}{8y+72-y}=\frac{7y+72}{\left(8y-y\right)+72}=\frac{7y+72}{7y+72}=1\) (2)

từ (1);(2)

=>B=1-1=0

Vậy B=0

24 tháng 6 2015

a)a+b+c=9

=>(a+b+c)2=81

=>a2+b2+c2+2ab+2bc+2ca=81

Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60

=>2(ab+bc+ca)=-60=>ab+bc+ca=-30

b)x+y=1

=>(x+y)3=1

=>x3+3x2y+3xy2+y3=1

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy=1(Do x+y=1)

c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)

=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0

d)đang tìm hướng giải

9 tháng 6 2021

a, ĐKXĐ: x≠±3

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\dfrac{-1}{x^2}\)

b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:

\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4

c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)

Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)

 

3 tháng 7 2017

a.Từ giả thiết: 
x+y=1. 
=> (x+y)^3=1^3=1 
=> x^3 +3x^2.y+3x.y^2+y^3=1(HĐT) 
=> x^3+y^3+3xy(x+y)=1 
=> x^3+y^3+3xy.1=1 
<=> x^3+y^3+3xy=1

b.x3-y3-3xy=x3-y3-3xy.1

Mà x-y=1 nên

x3-y3-3xy=x3-y3-3xy(x-y)

x3-y3-3x2y+3xy

=(x-y)3=13=1

2 tháng 3 2022

a, Thay x = -2 ; y = 3 ta được 

\(A=\dfrac{4\left(-2\right)-5.3}{8\left(-2\right)-7.3}=\dfrac{-8-15}{-16-21}=\dfrac{23}{37}\)

b, Ta có \(\dfrac{x}{y}=\dfrac{5}{4}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=k\Rightarrow x=5k;y=4k\)

Thay vào ta được \(A=\dfrac{4.5k-5.4k}{8.5k-7.4k}=\dfrac{0}{40k-28k}=0\)

2 tháng 3 2022

undefined

12 tháng 2 2017

\(x-y=9\)

\(\Rightarrow x=y+9\)

Thay \(x=y+9\) vào biểu thức \(B\), ta có:

\(\frac{7x-9}{6x+y}=\frac{7\left(y+9\right)-9}{6\left(y+9\right)+y}=\frac{7y+63-9}{6y+54+y}=\frac{7y+54}{\left(6y+y\right)+54}=\frac{7y+54}{7y+54}=1\)

\(\frac{7x+9}{8x-y}=\frac{7\left(y+9\right)+9}{8\left(y+9\right)-y}=\frac{7y+63+9}{8y+72-y}=\frac{7y+72}{\left(8y-y\right)+72}=\frac{7y+72}{7y+72}=1\)

\(\Rightarrow B=\frac{7x-9}{6x+y}+\frac{7x+9}{8x-y}=1+1=2\)

Vậy \(B=2\)

12 tháng 2 2017

Thay vì cách của bạn kia, Ta có: \(x-y=9=>x=9+y\)
Thay \(x=9+y\) vào B, ta có:
\(B=\dfrac{7x-9}{6x+y}+\dfrac{7x+9}{8x-y}\)
\(=>B=\dfrac{7(y+9)-9}{6(y+9)+y}+\dfrac{7(y+9)+9}{8(y+9)-y}\)
\(=>B=\dfrac{7y+54}{7y+54}+\dfrac{7y+72}{7y+72}\)
\(=>B=1+1=2\)

24 tháng 1 2018

Với x=-1 giá trị biểu thức A là

5+2.[8.(-1)+2]=5+2.(-8+2)=5+2.(-6)=5-12= -7

Với x=-1; y=2 giá trị biểu thức B là 

2.(y2-4x)=2.[22-4.(-1)]=2.(4+4)=2.8=16

24 tháng 1 2018

a) Thay x vào biểu thức 5+2.(8x+2)

    Ta được : 5 + 2. ( 8.(-1)+2)

                    = 5 + 2. (-6)

                    = 5 + ( -4 )

                    = 1

b) Thay x = -1 và y = 2 vào biểu thức 2.(\(y^2-4x\))

    Ta được : \(2.\left(2^2-4.\left(-1\right)\right)\)

                     = 2. [ 4 - 4 . ( -1 )]

                     = 2. 0

                     = 0

    

12 tháng 7 2017

b) \(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x-y\right)\left[\left(x+y\right)^2-2xy+xy\right]-3xy\)

\(=\left(x-y\right)\left(1-xy\right)-3xy\)

\(=x-x^2y-y\)