K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

ta có:

abcd=100.ab+cd=99.ab+ab+cd=99.ab+(ab+cd)

mà 99.ab=11.9.ab chia hết cho 11

ab+cd chia hết cho 11(theo đề)

=>99.ab+(ab+cd) chia hết cho 11

=>abcd chia hết cho 11(đpcm)

19 tháng 10 2015

Ta có
abcd = ab.100 + cd
        = ab.99 + ab + cd
        = ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11

9 tháng 6 2016

Ta có:

abcd = ab.100 +cd = ab.99 +ab +cd = ab.9.11 + ab +cd

Vì ab.9.11 chia hết cho 11 nên để abcd chia hết cho 11 thì ab + cd phải chia hết cho 11

Vậy nếu ab+ cd chia hết cho 11 thì abcd chia hết cho 11 

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Không có đủ cơ sở để đưa ra kết luận này bạn nhé.

19 tháng 4 2021

Ta có: abcdeg=10000ab+100+cd+eg

                      =(ab+cd+eg)(10000+101)

                              theo bài ra ta có ab+cd+eg chia hết cho 11=>(ab+cd+eg)(10000+101) chia hết cho 11 hay abcdeg chia hết cho 11(đpcm) 

                   Vậy với ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11

                           

19 tháng 7 2015

 abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)

Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11

=> abcdeg chia hết cho 11 (đpcm)

11 tháng 1 2018

ab+cd+eg chia hết cho 11

Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11

=> 9999ab+99cd+ab+cd+eg chia hết cho 11

=> 10000ab+100cd+eg chia hết cho 11

=> ab0000+cd00+eg chia hết cho 11

=> abcdeg chia hết cho 11

=> ĐPCM

Tk mk nha

11 tháng 1 2018

Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy...

5 tháng 5 2015

ta co

abcd=100ab+cd=99ab+(ab+cd)

vì 99ab chia het cho11 nen neu ab+cd chia het cho 11 thi abcd chia het cho11

tu day ne

tra loi cho cau roi do nh

hinh như co thuong cung len online math do 

co dang bai kho lam 

 bai do noi ve cong viec lam dong thoi

 

5 tháng 5 2015

giải gì ngắn thế ? siêu nhân hay siêu nhanh đây hả trời (Thành đây nè)

10 tháng 10 2016

Do abcd  chia hết cho 11 nên abcd chia hết cho 11

21 tháng 10 2017

Ta có: abcd=100ab+cd=101abc+(ab-cd).

Mà 101ab chia hết cho 11 suy ra ab- cd cũng chia hết cho 11.

Suy ra abcd chia hết cho 11.