y^2(x+1)=1567+x^2
GIÚP NÀO ANH EM !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(a+1\right)^2-\left(a-1\right)^2\)
\(=\left(a+1-a+1\right)\left(a+1+a-1\right)\)
\(=4a\)
b: \(\left(x+5\right)^2-x^2\)
\(=\left(x+5-x\right)\left(x+5+x\right)\)
\(=5\left(2x+5\right)\)
Giả thiết tương đương xy + yz + zx = 0.
Từ đó dễ dàng chứng minh được \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3xy.yz.zx=3x^2y^2z^2\Leftrightarrow\dfrac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{3x^2y^2z^2}=\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{zx}{y^2}\).
1) \(A=\left(x+y\right)^2+4xy=x^2+2xy+y^2+4xy=x^2+6xy+y^2\)
2) \(B=\left(6x-2\right)^2+4\left(3x-1\right)\left(2+y\right)+\left(y+2\right)^2\)
\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(6x-2+y+2\right)^2=\left(6x+y\right)^2=36x^2+12xy+y^2\)
3) \(C=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)
Đây nhé ta thêm bớt:
\(x^2+xy+y^2=x^2+y^2+2xy-xy=\left(x+y\right)^2-xy=\left(-2\right)^2-xy=4-xy\)
1456 + x = 1567 x 7
1456 + x = 10969
x = 10969 - 1456
x = 9513
a) Ta có: 2x+33=-11
nên 2x=-44
hay x=-22
b) Ta có: \(\dfrac{x}{2}=\dfrac{-49}{14}\)
nên x=-7
c) Ta có: \(\dfrac{5}{6}x+\dfrac{10}{3}=\dfrac{7}{2}\)
nên \(\dfrac{5}{6}x=\dfrac{7}{2}-\dfrac{10}{3}=\dfrac{1}{6}\)
hay \(x=\dfrac{1}{6}:\dfrac{5}{6}=\dfrac{1}{5}\)