K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

19 tháng 2 2022

a. -Xét △BHE có: BE//AM (gt)

\(\Rightarrow\dfrac{BE}{AM}=\dfrac{BH}{HM}\) (định lí Ta let)

Mà \(\dfrac{BH}{HM}=\dfrac{1}{2}\)(gt)

\(\Rightarrow\dfrac{BE}{AM}=\dfrac{1}{2}\)

-Mà \(AM=\dfrac{1}{2}AC\) (M là trung điểm AC).

\(\Rightarrow\dfrac{BE}{\dfrac{1}{2}AC}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{BE}{AC}=\dfrac{1}{4}\)

b) -Xét △BKE có: BK//AC (gt)

\(\Rightarrow\dfrac{BE}{AC}=\dfrac{BK}{KC}\) (định lí Ta-let)

Mà \(\dfrac{BE}{AC}=\dfrac{1}{4}\left(cmt\right)\)

\(\Rightarrow\dfrac{1}{4}=\dfrac{BK}{KC}\)

\(\Rightarrow KC=4BK\) 

Mà \(BK+KC=BC\)

\(\Rightarrow BK+4BK=BC\)

\(\Rightarrow5BK=BC\)

\(\Rightarrow\dfrac{BK}{BC}=\dfrac{1}{5}\)

c) \(\dfrac{S_{ABK}}{S_{ABC}}=\dfrac{BK}{BC}=\dfrac{1}{5}\)

28 tháng 3 2018

a)  Áp dụng định lý Pytago vào tam giác vuông  ABC   ta có:

             \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\)\(BC^2=9^2+12^2=225\)

\(\Leftrightarrow\)\(BC=\sqrt{225}=15\)cm

Diện tích tam giác  ABC  là:

 \(S_{ABC}=\frac{AB.AC}{2}=\frac{9.12}{2}=54\)cm2

b)   Xét  \(\Delta ABC\)và    \(\Delta HBA\)  có:

\(\widehat{BAC}=\widehat{BHA}=90^0\)

\(\widehat{ABC}\) chung

suy ra:   \(\Delta ABC~\Delta HBA\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)

\(\Rightarrow\)\(AB.AB=BH.BC\)

7 tháng 1

Xét tam giác ACD và tam giác MBD có:

      AD = DM (gt)

      BD = DC (gt)

   \(\widehat{BDM}\) = \(\widehat{ADC}\) (hai góc đối đỉnh)

⇒ \(\Delta\)ACD = \(\Delta\) MBD  (c-g-c)

Xét tứ giác ABMC có

     AD = DM

      BD = DC

⇒ tứ giác ABMC  là hình bình hành vì tứ giác có hai đường chéo căt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành.

⇒ AC // BM

⇒ \(\widehat{ABM}\) = \(\widehat{MCA}\) (vì tứ giác ABMC là hình bình hành)

 

 

 

   

 

7 tháng 1

 loading...

 xét tam giác ACD và tam giác MBD có 

AD=DM [ gt ]

BD=DC[ gt ]

BDM = ADC hai góc đối đỉnh

suy ra tam giác ACD= tam giác MBD [ c-g-c]

xét tứ giác ABMC có

AD = DM

BD=DC

suy ra tứ giác ABMC là hình bình hành vì tứ giác  có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành

suy ra ABM=MCA vì tứ giác ABMC là hình bình hành .

17 tháng 12 2021

Diện tích tam giác ABM là:

4.3=12(cm2)

Diện tích tam giác ABC là:

4.6=24(cm2)