Tìm x,y biết:\(\dfrac{x}{y}=\dfrac{7}{10}\)và x+y=34
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
\(\dfrac{x}{5}=\dfrac{4}{-3}\)
⇔\(-3.x=4.5\)
⇔\(-3x=20\)
⇔\(x=-\dfrac{20}{3}\)
b: Đặt \(\dfrac{x}{4}=\dfrac{y}{7}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=7k\end{matrix}\right.\)
Ta có: \(x^2-y^2=-33\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=4\\y=7k=7\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=-4\\y=7k=-7\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{15}{5}=3\)
⇒\(\left\{{}\begin{matrix}x=3.9=27\\y=3.7=21\\z=3.3=9\end{matrix}\right.\)
a) Ta có \(\dfrac{x}{4} = \dfrac{y}{7}\) và x + y = 55
Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{x + y}}{{4 + 7}} = \dfrac{{55}}{{11}} = 5\)
\( \Rightarrow \dfrac{x}{4} = 5 \Rightarrow x = 20\)
\( \dfrac{y}{7} = 5 \Rightarrow y = 35\)
Vậy x = 20; y = 35
b) \(\dfrac{x}{8} = \dfrac{y}{3}\) và x – y = 35
Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{8} = \dfrac{y}{3} = \dfrac{{x - y}}{{8 - 3}} = \dfrac{{35}}{5} = 7\)
\( \Rightarrow \dfrac{x}{8} = 7\) \( \Rightarrow \) x = 56
Mà x – y = 35 \( \Rightarrow \) y = 56 – 35 = 21
Vậy x = 56 ; y = 21
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
\(\dfrac{x}{y}=\dfrac{7}{10}=>\dfrac{x}{7}=\dfrac{y}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x+y}{7+10}=\dfrac{34}{17}=2\)
=>x=2.7=14
=>y=2.10=20
\(\dfrac{x}{y}=\dfrac{7}{10}\)
\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{10}\) và \(x+y=34\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x+y}{7+10}=\dfrac{34}{17}=2\)
\(\Rightarrow\dfrac{x}{7}=2\rightarrow x=7.2=14\)
\(\dfrac{y}{10}=2\rightarrow y=10.2=20\)
Vậy \(x=14;y=20\)
Chúc bạn học tốt <3