K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

* Ta có : \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)

Ta có : \(\frac{1}{10}>\frac{1}{15};\frac{1}{11}>\frac{1}{15};\frac{1}{12}>\frac{1}{15};\frac{1}{13}>\frac{1}{15};\frac{1}{14}>\frac{1}{15}\)

=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}>\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}=\frac{5}{15}=\frac{1}{3}\)

=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)>3.\frac{1}{3}=1\)

=> S >1     (1)

** Ta có : \(\frac{1}{11}<\frac{1}{10};\frac{1}{12}<\frac{1}{10};\frac{1}{13}<\frac{1}{10};\frac{1}{14}<\frac{1}{10}\)

=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}<\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{5}{10}=\frac{1}{2}\)

=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)<3.\frac{1}{2}=\frac{3}{2}<\frac{4}{2}=2\)

=> S < 2     (2)

Từ (1) và (2) => 1 < S < 2 (đpcm)

28 tháng 2 2016

Vì \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}<\frac{3}{10};\frac{3}{12}<\frac{3}{10};\frac{3}{13}<\frac{3}{10};\frac{3}{14}<\frac{3}{10}\)

\(\Rightarrow S<\frac{3}{10}.5\Rightarrow S<\frac{15}{10}\Rightarrow S<\frac{20}{10}\Rightarrow S<2\left(1\right)\)

Vì \(\frac{3}{10}>\frac{3}{14};\frac{3}{11}>\frac{3}{14};\frac{3}{12}>\frac{3}{14};\frac{3}{13}>\frac{3}{14};\frac{3}{14}=\frac{3}{14}\)

\(\Rightarrow S>\frac{3}{14}.5\Rightarrow S>\frac{15}{14}\Rightarrow S>1\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow1

23 tháng 2 2021

1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)

2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)

3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)

3 tháng 4 2022

c/m phần nào

3 tháng 4 2022

giup mình phần d,e,g với ạ

19 tháng 11 2017

1+1=2 là vì các bạn lấy ví dụ ra: 1 cái khăn + 1 cái khăn = 2 cái khăn đơn giản

câu dưới mình ko biết sorry nha

20 tháng 11 2017

vì 1+1 thì nó bằng 2

trong trò oản tù tì xiên là 1 kéo là 2 nên hai cái đó bẳng nhau

a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)

b: a<b

=>-2a>-2b

=>-2a-3>-2b-3

c: =x^2+2xy+y^2+y^2+6y+9

=(x+y)^2+(y+3)^2>=0 với mọi x,y

d: a+3>b+3

=>a>b

=>-5a<-5b

=>-5a+1<-5b+1

28 tháng 6 2021

`sqrta+1>sqrt{a+1}`

`<=>a+2sqrta+1>a+1`

`<=>2sqrta>0`

`<=>sqrta>0AAa>0`

`sqrt{a-1}<sqrta`

`<=>a-1<a`

`<=>-1<0` luôn đúng

`sqrt6-1>sqrt3-sqrt2`

`<=>sqrt6-sqrt3+sqrt2-1>0`

`<=>sqrt3(sqrt2-1)+sqrt2-1>0`

`<=>(sqrt2-1)(sqrt3+1)>0` luôn đúng

1.     Cho hình vẽ                                                           A                                                      Ba.     Chứng minh:    AOB=    OCDb.     Chứng minh: AB=CD VÀ AB//CDc.      Chứng minh: AD=BC VÀ AD//BC                                              Od.     Chứng minh:    ABC=    CDA                                                                                        C                                                      ...
Đọc tiếp

1.     Cho hình vẽ                                                           A                                                      B

a.     Chứng minh:    AOB=    OCD

b.     Chứng minh: AB=CD VÀ AB//CD

c.      Chứng minh: AD=BC VÀ AD//BC                                              O

d.     Chứng minh:    ABC=    CDA

                                                                                        C                                                       D

1
11 tháng 11 2021

mk ko thấy hình ảnh bạn ơi 

11 tháng 11 2021

mình đã đăng lại rồi nhé

 

27 tháng 12 2017

Vì bạn tính sai.Đơn giản thế thôi!

27 tháng 12 2017

Đây là dạng toán về: Nguỵ biện về Toán học. 
Nguỵ biện là sự cố ý suy luận sai, nhưng làm như là đúng. Chẳng hạn như : 1 + 1 =3 
Bài toán có thể suy luận như sau: 
Giải 
1 + 1 = 3 
2 = 3 
Gỉa sử ta có đẳng thức: 
14 + 6 - 20 = 21 + 9 - 30 
Đặt thừa số chung ta có: 
2 x ( 7 + 3 - 10 ) = 3 x ( 7 + 3 - 10 ) 
Theo toán học thì hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất bằng nhau. 
Do đó: 
2 = 3 
Giải thích: 
Sự thật 2 không thể bằng 3. Sai lầm trong lí luận của chúng ta là ở chỗ ta kết luận rằng: Hai tích bằng nhau và có thừa số thứ hai bằng nhau thì thừa số thứ nhất cũng bằng nhau. Điều đó không phải bao giờ cũng đúng. 
Kết luận đó đúng khi và chỉ khi hai thừa số bằng nhau đó khác 0. Khi đó ta có thể chia 2 vế của đẳng thức cho số đó. Trong trường hợp thừa số đó bằng 0, thì luôn luôn có a x 0 = b x 0 với bất kì giá trị nào của a và b. 
Vì vậy, ta không thể khẳng định được rằng a = b 

19 tháng 8 2023

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

24 tháng 3 2017

Bài 1:

Ta có: (2a-2b)2 lớn hơn hặc bằng 0

<=> 4a2-8ab+4b2 lớn hơn hoặc bằng 0

<=> 5a2-a2-8ab+20b2-16b2 lớn hơn hoặc bằng 0

<=> 5a2+20b2 lớn hơn hoặc bằng a2+8ab+16b

<=> 5(a2+4b2) lớn hơn hoặc bằng (a+4b)2

<=> 5(a2+4b2) lớn hơn hoặc bằng 1 [ Thay (a+4b)2 =1]

24 tháng 3 2017

3)

\(a=b+1\Leftrightarrow a+1>b+1\Leftrightarrow a>b+1-1\\ \Leftrightarrow a>b\)