Tính nhanh A = ( 1 - 1/2 ) x ( 1 - 1/3 ) x ( 1 - 1/4 ) x...... x ( 1 - 1/2014 ) - ( 1 - 1/2015 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2013 x 2014 +2014 x 2015 + 2015 x 2016 ) x ( 1 + 1/3 - 1 - 1/3 )
= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x 0
= 0
a.\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2}{3}...\frac{2014}{2015}=\frac{1.2.3...2014}{2.3...2015}=\frac{1}{2015}\)
b.\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{128}-\frac{1}{256}=1-\frac{1}{256}=\frac{255}{256}\)
c.\(\frac{5}{2}+\frac{5}{4}+\frac{5}{8}+...+\frac{5}{256}=5\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)=5.\frac{255}{256}=\frac{1275}{256}\)
d.14,35+(13,7-13,6).1=14,35+0,1.1=14,35+0,1=14,45
a) Ta có: \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2014}\right)\left(1-\dfrac{1}{2015}\right)\left(1-\dfrac{1}{2016}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2013}{2014}\cdot\dfrac{2014}{2015}\cdot\dfrac{2015}{2016}\)
\(=\dfrac{1}{2016}\)
b) Ta có: \(\dfrac{x-2}{12}+\dfrac{x-2}{20}+\dfrac{x-2}{30}+\dfrac{x-2}{42}+\dfrac{x-2}{56}+\dfrac{x-2}{72}=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\left(\dfrac{1}{3}-\dfrac{1}{9}\right)=\dfrac{16}{9}\)
\(\Leftrightarrow\left(x-2\right)\cdot\dfrac{2}{9}=\dfrac{16}{9}\)
\(\Leftrightarrow x-2=\dfrac{16}{9}:\dfrac{2}{9}=\dfrac{16}{9}\cdot\dfrac{9}{2}=8\)
hay x=10
Vậy: x=10
A = \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2015}\right)\)
A = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2014}{2015}\)
A = \(\frac{1}{2015}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{2015}\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2014}{2015}=\frac{1\cdot2\cdot3\cdot...\cdot2014}{2\cdot3\cdot...\cdot2014\cdot2015}=\frac{1}{2015}\)
2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016
Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016
=> 2A=1/1.2-1/2015.2016
=> 2A < 1/2 => A < 1/4
=1/2 x 2/3 x 3/4 x 4/5 x 5/6 x.....x2013/2014 - 2014/2015
=1/2014 - 2014/2015
=1/2015