K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

y=-13

nhân chéo lên rồi giải

27 tháng 2 2016

làm rồi mak

y=-13

6 tháng 6 2015

Các cặp số nguyên x;y thỏa mãn là:

x-5-4-3-2-1012345
y0-1-2-3-4-543210

 

=> có 11 cặp, k chắc nữa

 

NV
31 tháng 1 2021

1.

\(2\left|x\right|+3\left|y\right|=13\Rightarrow\left|x\right|=\dfrac{13-3\left|y\right|}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\left|y\right|\le\dfrac{13}{3}\\\left|y\right|\text{ là số lẻ}\end{matrix}\right.\)  \(\Rightarrow\left|y\right|=\left\{1;3\right\}\)

- Với \(\left|y\right|=1\Rightarrow\left|x\right|=5\Rightarrow\) có 4 cặp

- Với \(\left|y\right|=3\Rightarrow\left|x\right|=2\) có 4 cặp

Tổng cộng có 8 cặp số nguyên thỏa mãn

2.

\(x\left(y+3\right)=7y+21+1\)

\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=1\)

\(\Leftrightarrow\left(x-7\right)\left(y+3\right)=1\)

\(\Rightarrow\left(x;y\right)=\left(6;-4\right);\left(8;-2\right)\) có 2 cặp

20 tháng 11 2016

(2x - 3)2 + |y| = 1

\(\Rightarrow\left(2x-3\right)\le1\)

Do x nguyên nên (2x - 3)2 ϵ N mà (2x - 3)2 lẻ và \(0\le\left(2x-3\right)^2\le1\)

nên \(\begin{cases}\left|y\right|=0\\\left(2x-3\right)^2=1\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x-3\in\left\{1;-1\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\2x\in\left\{4;2\right\}\end{cases}\)\(\Rightarrow\begin{cases}y=0\\x\in\left\{2;1\right\}\end{cases}\)

Vậy có 2 cặp giá trị (x;y) thỏa mãn đề bài là (2;0) và (1;0)

22 tháng 11 2016

2 cặp

17 tháng 1 2016

trả lời gấp

 

17 tháng 1 2016

20 đung ròi

 

1 tháng 9 2018

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

2 tháng 9 2018

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi