cho a,b,c>0,a+b+c=1. tìm gtnn của A=1/abc+1/a^2+b^2+c^2
mọi ng ơi giúp mình, nhớ làm chi tiết nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`P=a+b+c+1/a+1/b+1/c`
`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`
Áp dụng BĐT cosi:
`a+1/(9a)>=2/3`
`b+1/(9b)>=2/3
`c+1/(9c)>=2/3`
Áp dụng BĐT cosi schwart
`1/a+1/b+1/c>=9/(a+b+c)>=9`
`<=>8/9(1/a+1/b+1/c)>=8`
`=>P>=2/3+2/3+2/3+8=10`
Dấu "=" xảy ra khi `a=b=c=1/3`
Nãy ghi nhầm :v
`P=a+b+c+1/a+1/b+1/c`
`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`
Áp dụng BĐT cosi:
`a+1/(9a)>=2/3`
`b+1/(9b)>=2/3`
`c+1/(9c)>=2/3`
Áp dụng BĐT cosi schwart
`1/a+1/b+1/c>=9/(a+b+c)>=9`
`<=>8/9(1/a+1/b+1/c)>=8`
`=>P>=2/3+2/3+2/3+8=10`
Dấu "=" xảy ra khi `a=b=c=1/3`
a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D
Áp dụng BĐT Mincopxki và AM-GM có:
\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)
Khi \(a=b=c=2\)
Thao bài ra , ta có
\(a^2+b^2=1,c^2+d^2=1\)
và ac + bd = 0
Theo bất đẳng thức Bunhiacopxki , Ta có :
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2\)
mà ac + bd = 0
\(\Rightarrow\left(ac+bd\right)=0\)
\(\Rightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2=0\)
, \(\Rightarrow ac=bd\)
\(\Rightarrow ab=cd\Rightarrow\left(ab+cd\right)=0\Rightarrow\left(ab+cd\right)^2=0\)
Vậy \(ab+cd=0\)
Chúc bạn học tốt =))
Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b)
Áp dụng bất đẳng thức Cauchy ta được
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được)
≤ 1/16a+1/16c+1/32b+1/32c
=1/16a+1/32b+3/32c
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết
Do đó dấu "=" không xảy ra
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1)
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2)
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3)
Cộng (1)(2)(3) cho ta
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c)
=3/16*(ab+bc+ca)abc= 3/16
tk nha mk trả lời đầu tiên đó!!!