Cho tam giác ABC. Trên tia đối của tia AB và AC lân lượt lấy các điểm C’ và B’ sao cho AB = AB’ và AC = AC’. Gọi M, M’ tương ứng là trung điểm của BC và B’C’. Chứng minh:
a/ BC = B’C’ b/ BC//B’C’ c) AM = AM’ d*/ A, M, M’ thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BAC và tam giác B'AC'
có AB=AB' (GT)
AC=AC' (GT)
góc CAB = góc C'AB' (đối đỉnh)
suy ra tam giác BAC = tam giác B'AC' (c.g.c) (1)
suy ra BC=B'C' (hai cạnh tương ứng)
b) Vì BM=MC = BC/2, B'M'=M'C' = B'C'/2
mà B'C' = BC
suy ra BM=MC = B'M'=M'C'
Từ (1) suy ra góc B' = góc B
Xét tam giác AB'M' và tam giác ABM
có M'B' = BM (CMT)
góc B=góc B' (CMT)
AB=AB' (GT)
suy ra tam giác AB'M' = tam giác ABM (c.g.c) (*)
Suy ra góc M'AB' = góc MAB
Ta có góc BAB' = 1800
suy ra góc BAM + góc MAC + góc CAB' = 1800
Hay gócM'AB'+ góc MAC + góc CAB' = 1800
suy ra góc MAM' = 1800
suy ra M,A, M' thẳng hàng
c) Từ (*) suy ra AM = AM' (hai cạnh tương ứng)
Theo định lý Ta - let ta có:
\(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}\)
\(\Leftrightarrow\dfrac{4}{6}=\dfrac{3}{AC}\)
\(\Rightarrow\dfrac{2}{3}=\dfrac{1}{AC}\)
\(\Rightarrow2AC=3\)
\(\Rightarrow AC=\dfrac{2}{3}\)
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: AM=ED/2
AN=BC/2
mà ED=BC
nên AM=AN
Bạn tự vẽ hình nha! ^^
a,Xét Tg ADE và ABC có:
AD=AB (gt)
AE=AC (gt)
DAE=BAC (đối đỉnh)
=> Tg ABC=ADE (c.g.c)
=>góc ADE=ABC
Mà hai góc trên so le trong => DE//BC
b, Tg ABC=ADE => DE=BC => ND=MB (=1/2.BC)
Xét Tg ADN và ABM có:
AD=AB (gt)
DN=BM (cmt)
ADN=ABM (theo câu a)
=> Tg ADN=ABM (c.g.c) => DAN=BAM
=> DAN+NAB=BAM+NAB => DAB=NAM
=> NAM=180o
=> N, A, M thẳng hàng (1)
Mặt khác, Tg ADN=ABM => AN=AM (2)
Từ (1) và (2) => A là tđ của NM
Bài 1 :
Xét tam giác ABC và ADE có :
góc EAD = góc CAB (đối đỉnh)
CA=EA (gt)
BA=DA (gt)
suy ra tam giác ABC=ADE (c.g.c)
suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )
Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM
Xét tam giác ENA và CMA có:
EN = CM ( cmt)
góc E = góc C (cmt)
AE = AC (gt)
suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng )
Xét tam giác NDA và MBA có:
góc D= góc B (cmt)
ND = MB (cmt )
DA = BA (cmt )
suy ra tam giác NDA = MBA (c.g.c)suy ra góc NAD = góc MAB
Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )
Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ
suy ra 3 điểm M,A,N thẳng hàng (2)
Từ (1) và (2 ) suy ra A là trung điểm của MN
( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)
Bài 3:
Xét ΔHMB vuông tại H và ΔKMC vuông tại K có
MB=MC
\(\widehat{HMB}=\widehat{KMC}\)
Do đo: ΔHMB=ΔKMC
Suy ra: BH=CK
a: Xét ΔBAC và ΔB'AC' có
BA=B'A
\(\widehat{BAC}=\widehat{B'AC'}\)
AC=AC'
Do đó: ΔBAC=ΔB'AC'
Suy ra: BC=B'C'